Можно решить графическим
x^2+y^2=R^2 (уравнение
окружности с радиусом R и центром в начале координат)
1)Построим грвфик первого уравнения
x^2+y^2=3^2
Координаты центра окружности(0;0);Радиус R=3
2)Построим график второго уравнения
y-x^2=p
y=x^2+p (парабола, ветви вверх, координаты вершины(0;p))
Если p увеличивается, то парабола смещается вверх вдоль оси y и наоборот, если p уменьшается
3) Мы имееем:
- окружность с R=3 с центром в начале координат
- параболу, которая двигается только вдоль оси y, ветви вверх
Мы уже имеем 2 решения благодаря ветвям параболы, которые пересекают окружность в 2-ух точках. Как получить третью точку пересечения(т.е третье решение)? Сместим параболу так, чтобы ее вершина касалась окружности И ветви также продолжали пересекать окружность в 2 точках
Сместим с параболу на -3, т.е вниз на 3 точки(3 потому что радиус окружности также равен 3)
Получим конечный результат(см рис.). 3 решения при p=-3
ответ: p=-3
б) 27-b³ = 3³ - b³ = (3-b)(3²+3b +b²) = (3-b)(9 +3b + b²)
в) b³ +1 = b³+1³ =(b+1)(b²-b +1)
г) x²-18x +81 = x²-2*9*x +9² = (x-9)² =(x-9)(x-9)
д) 36b²+12b +1 =(6b)² +2*6b*1 +1² = (6b+1)²= (6b+1)(6b+1)