ответ: Нет.
Из условия следует, что f(x) = (x – a)(x – b), где a ≠ b.
Пусть искомый многочлен f(x) существует.
Тогда, очевидно f(f(x)) = (x – t1)²(x – t2)(x – t3).
Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1.
Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).
То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней.
0,15 (x - 4) = 9,9 - 0,3 (x - 1)
0,15x - 0,6 = 9,9 - 0,3x + 0,3
0,15x + 0,3x = 9,9 + 0,3 + 0,6
0,45x = 10,8
x = 10,8 : 0,45 = 1080 : 45 = 24
Проверка :
0,15 (24 - 4) = 9,9 - 0,3 (24 - 1)
0,15 · 20 = 9,9 - 0,3 · 23
3 = 9,9 - 6,9 = 3
-----------------------------------------------
1,6 (a - 4) - 0,6 = 3 (0,4a - 7)
1,6a - 6,4 - 0,6 = 1,2a - 21
1,6a - 1,2a = 6,4 + 0,6 - 21
0,4a = -14
a = -14 : 0,4 = - 140 : 4 = -35
Проверка :
1,6 (- 35 - 4) - 0,6 = 3 (0,4 · (-35) - 7)
1,6 · (-39) - 0,6 = 3 · (-14 - 7)
-62,4 - 0,6 = 3 · (-21)
-63 = -63