В Китае, как ты знаешь, и сам император и все его подданные — китайцы. Дело было давно, но потому-то и стоит о нём послушать, пока оно не забудется совсем! В целом мире не нашлось бы дворца лучше императорского; он весь был из драгоценного фарфора, зато такой хрупкий, что страшно было до него дотронуться. В саду росли чудеснейшие цветы; к самым лучшим из них были привязаны серебряные колокольчики; звон их должен был обращать на цветы внимание каждого прохожего. Вот как тонко было придумано! Сад тянулся далеко-далеко, так далеко, что и сам садовник не знал, где он кончается. Из сада можно было попасть прямо в густой лес; в чаще его таились глубокие озёра, и доходил он до самого синего моря. Корабли проплывали под нависшими над водой вершинами деревьев, и в ветвях их жил соловей, который пел так чудесно, что его заслушивался, забывая о своём неводе, даже бедный, удручённый заботами рыбак. «Господи, как хорошо!» — вырывалось наконец у рыбака, но потом бедняк опять принимался за своё дело и забывал о соловье, на следующую ночь снова заслушивался его и снова повторял то же самое: «Господи, как хорошо!»не
- это правая полуокружность от окружности
с центром в точке (0,0) и R=2 , выразим
, причём для 1-ой четверти знак перед корнем (+) , а для 4-ой четверти знак (-) .
- это парабола , ветви которой направлены вправо, вершина в точке (0,0) . Выразим y:
, причём знак (+) перед корнем для 1-ой четверти, а знак (-) для 4-ой четверти.
Область симметричная относительно оси ОХ. Поэтому можно подсчитать площадь одной половины, а затем удвоить её.
Найдём точки пересечения окружности и параболы.


![Q=\int \sqrt{4-x^2}\, dx\\\\Q=\int \frac{4-x^2}{\sqrt{4-x^2}}\, dx=4\int \frac{dx}{\sqrt{4-x^2}}-\int \frac{x\, \cdot \, x\, dx}{\sqrt{4-x^2}}=\Big[\; u=x\; ,\; du=dx\; ,\\\\dv=\frac{x\, dx}{\sqrt{4-x^2}}\; ,\; v=-\frac{1}{2}\cdot 2\sqrt{4-x^2}=-\sqrt{4-x^2}\; ,\; \int u\, dv=uv-\int v\, du\; \Big]=\\\\=4\cdot arcsin\frac{x}{2}-\Big(-x\sqrt{4-x^2}+\int \sqrt{4-x^2}\, dx\Big)=\\\\=4\, arcsin\frac{x}{2}+x\sqrt{4-x^2}-Q\; \Rightarrow \; \; Q=4\, arcsin\frac{x}{2}+x\sqrt{4-x^2}-Q\; ,](/tpl/images/1075/2260/84be5.png)


