Пусть х км/ч - скорость течения реки, тогда скорость катера по течению равна (18+х) км/ч, а против течения - (18-х) км/ч. Время, затраченное на движение по течению, равно 80/(18+х); на движение против течения - 80/(18-х); на весь путь - 80/(18+х)+80/(18-х) или 9 часов. Составим и решим уравнение:
18+x
80
+
18−x
80
=9 |*(18+x)(18-x)
80(18-x)+80(18+x)=9(324-x^2)80(18−x)+80(18+x)=9(324−x
2
)
1440-80x+1440+80x=9(324-x^2)1440−80x+1440+80x=9(324−x
2
)
2880=9(324-x^2)2880=9(324−x
2
) |:9
320=324-x^2320=324−x
2
x^2=324-320x
2
=324−320
x^2=4x
2
=4
х=2
х=-2<0 (не подходит, т.к. скорость не может быть отрицательной)
ответ: скорость течения реки 2 км/ч
P.S сори что так написал(((
y'=(x^2)'*ln x+x^2*(ln x)'
y'=2x*ln x+x^2*(1/x)
y'=2x*ln x+x
Что бы найти экстремумы приравняем производную к нулю
2x*ln x+x=0
x(2*ln x+1)=0
2*ln x+1=0 x=0 это первый корень
2*ln x=-1
ln x= -1/2
x= e^(-1/2)
x=1/√e
получаем два корня x=0 и x=1/√e
Начертим график и посчитаем интервалы монотонности
Так как у нас ln x то область определения y' x>0 по этому за ее пределами мы знаки не считаем
Исходя из графика видно, что при x э (0;1/√e) функция убывает т.к. производная на данном интервале отрицательная, а на интервале (1/√e;+∞) функция возрастает т.к. производная на данном интервале положительная.
У нас имеется одна точка экстремума x=1/√e, и она является точкой минимума так как в ней производная меняет знак с - на +, то есть функция перестает убывать и начинает расти.