Дан ромб ABCD: AC = 2√3 и BD = 2 — диагонали. Диагонали точкой пересечения делятся пополам и перпендикулярны друг другу, тогда:
OA = OC = AC/2 = 2√3/2 = √3;
OB = OD = BD/2 = 2/2 = 1;
∠AOB = ∠BOC = ∠COD = ∠DOA = 90°.
Таким образом, диагонали делят ромб ABCD на 4 равных прямоугольных треугольника.
1. Рассмотрим △AOB: ∠AOB = 90°, OA = √3 и OB = 1 — катеты.
Тангенсом острого угла прямоугольного треугольника является отношение длины катета, противолежащего данному углу, к длина катета, прилежащего к данному углу.
Найдем тангенс ∠OAB:
tg∠OAB = OB/OA = 1/√3 = 1/√3 * √3/√3 = (1 * √3)/(√3)² = √3/3.
∠OAB = 30°.
2. По теореме о сумме углов треугольника:
∠AOB + ∠OAB + ∠ABO = 180°;
90° + 30° + ∠ABO = 180°;
∠ABO = 180° - 120°;
∠ABO = 60°.
3. Диагонали ромба являются биссектрисами его углов, тогда:
∠A = 2 * ∠OAB = 2 * 30° = 60°;
∠B = 2 * ∠ABO = 2 * 60° = 120°.
Так как противолежащие углы ромба равны, то:
∠A = ∠C = 60°;
∠B = ∠D = 120°.
ответ: ∠A = 60°, ∠B = 120°, ∠C = 60°, ∠D = 120°.
Объяснение:
У високостном році 366, є місяці по 31 денів по 30 днів та у лютому 29 днів
Тож подивимось скількі днів у місяці містять двійку:
це номери 2, 12, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 - загалом це 12 днів на місяць,
як бачимо у кожному місяці високостного року по 12 днів із цифрою 2
тому на рік таких днів буде 12*12=144
а ймовірність такої події
--------------------------
якщо ж казати про можливість натрапити саме на число 2 на листочку то це лише , оскыльки других днів у році стількиж скіль ки ж і місяців у році, а саме