М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Sagyndykkymbat
Sagyndykkymbat
23.09.2022 10:38 •  Алгебра

Решите уравнение (х-2)(5х+3)=(х-2)(3х-5)

👇
Ответ:
Swaggygirl
Swaggygirl
23.09.2022
5x^2+3x-10x-6=3x^2-5x-6x+10
5x^2-7x-6-3x^2+11x-10=0
2x^2+4x-16=0
x^2+2x+8=0
(x-2)(x+4)=0
x=2
x=-4
4,8(67 оценок)
Ответ:
rtyurtuyu
rtyurtuyu
23.09.2022
(х-2)(5х+3)=(х-2)(3х-5)
(х-2)(5х+3)-(х-2)(3х-5)=0
(x-2)(5x+3-3x+5)=0
(x-2)(2x+8)=0
x=2
x=-4
4,5(72 оценок)
Открыть все ответы
Ответ:
malina78911
malina78911
23.09.2022
Попробую объяснить порядок решения задачи. Пусть одна труба запонит бассейн за Х часов, тогда вторая труба заполнит его за Х+6 часов. Известно что вместе две трубы заполнили его за 2 часа половину бассейна, значит за 2*2=4 часа они заполнят весь бассейн. Можно записать: 1/Х+1/(Х+6)=1/4. Левую часть приведём к общему знаменателю, получим (2Х+6)/(Х²+6)=1/4 или 8Х+24=Х²+6Х. Решаем квадратное уравнение: Х²-2Х-24=0; дискриминант D=4-4*(-24)=100, находим корни Х₁=(2-10)/2=-4 (нам не подходит, так как время не может быть отрицательным), Х₂=(2+10)/2=6 часов потребуется первой трубе наполнить бассейн. А второй трубе потребуется 6+6=12 часов чтобы наполнить бассейн.
4,8(56 оценок)
Ответ:
timirshan
timirshan
23.09.2022
1)
2sin(x/2)=3sin²(x/2)
2sin(x/2)-3sin²(x/2)=0
sin(x/2) (2-3sin(x/2))=0

a) sin(x/2)=0
x/2=πk, k∈Z
x=2πk,  k∈Z

b)  2-3sin(x/2)=0
-3sin(x/2)=-2
sin(x/2)=2/3
x/2=(-1)^n * arcsin(2/3)+πk,  k∈Z
x=2*(-1)^n * arcsin(2/3)+2πk,  k∈Z

ответ: 2πk,  k∈Z;
            2*(-1)^k*arcsin(2/3)+2πk, k∈Z.

2)
sin6xcosx+cos6xsinx=0.5
sin(6x+x)=0.5
sin7x=0.5
7x=(-1)^k*(π/6)+πk,  k∈Z
x=(-1)^k*(π/42)+(π/7)*k,  k∈Z

ответ: (-1)^k*(π/42)+(π/7)*k,  k∈Z.

3)
3sinx+4sin(π/2+x)=0
3sinx+4cosx=0
3sin2*( \frac{x}{2} )+4cos2*( \frac{x}{2} )=0 \\ \\ 
3*2sin( \frac{x}{2} )cos( \frac{x}{2} )+4(cos^2( \frac{x}{2} )-sin^2( \frac{x}{2} ))=0 \\ \\ 
-4sin^2( \frac{x}{2} )+6sin( \frac{x}{2} )cos( \frac{x}{2} )+4cos^2( \frac{x}{2} )=0 \\ \\ 
2sin^2( \frac{x}{2} )-3sin( \frac{x}{2} )cos( \frac{x}{2} )+2cos^2( \frac{x}{2} )=0 \\ \\ 
 \frac{2sin^2( \frac{x}{2} )}{cos^2( \frac{x}{2} )}- \frac{3sin( \frac{x}{2} )cos( \frac{x}{2} )}{cos^2( \frac{x}{2} )}+ \frac{2cos^2( \frac{x}{2} )}{cos^2( \frac{x}{2} )}=0
2tg^2( \frac{x}{2} )-3tg( \frac{x}{2} )-2=0 \\ \\ 
y=tg( \frac{x}{2} ) \\ \\ 
2y^2-3y-2=0 \\ 
D=9+4*2*2=25 \\ 
y_{1} =\frac{3-5}{4}=- \frac{2}{4}=- \frac{1}{2} \\ \\ 
y_{2}= \frac{3+5}{4}=2

a) При у=-1/2
tg( \frac{x}{2} )=- \frac{1}{2} \\ 
 \frac{x}{2}=-arctg \frac{1}{2} + \pi k \\ \\ 
x=-2arctg \frac{1}{2}+2 \pi k,
k∈Z;

b)  При у=2
tg( \frac{x}{2} )=2 \\ 
 \frac{x}{2} =arctg2+ \pi k \\ \\ 
x=2arctg2+2 \pi k,
k∈Z.

ответ: -2arctg \frac{1}{2}+2 \pi k,k∈Z;
             2arctg2+2 \pi k,k∈Z.
4,8(70 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ