М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
playertony200
playertony200
05.06.2020 20:10 •  Алгебра

Найдите значение многочлена m² - 2mn + n² - 5m + 5n - 7,если m - n = 4​

👇
Ответ:
diana04s
diana04s
05.06.2020

-11

Объяснение:

(m²-2mn+n²)-(5m-5n)-7=(m-n)²-5(m-n)-7=4²-5·4-7=16-20-7=-11

4,7(63 оценок)
Открыть все ответы
Ответ:
erro14
erro14
05.06.2020

(Первый вариант) Cумма цифр двузначного числа равна 7 значит єто число равно либо 70, либо 61, либо 52, либо 43, либо 34, либо 25, либо 16. Так как только для числа

70-7=63

61-16=45

52-25=26

43-34=9

25-52=-27

16-61=-45

Значит данное число равно 52

ответ: 52

 

Либо так.(Второй вариант) Пусть цифра десятков у данного числа равна х, тогда цифра единиц равна 7-х, а само число равно 10х+(7-х)=10х+7-х=9х+7, а если переставить получим число равное 10(7-х)+х=70-10х+х=70-9х. По условию задачи составляем уравнение:

9х+7-(70-9х)=27;

9х+7-70+9х=27;

18х-63=27;

18х=27+63;

18х=90;

х=90:18

х=5

7-х=7-5=2

а значит искомое число равно 52

ответ: 52

4,8(51 оценок)
Ответ:
lidiyaerox28
lidiyaerox28
05.06.2020

ответ:Допустим, у нас есть бесконечно малые при одном и том же {\displaystyle x\to a} x\to a величины {\displaystyle \alpha (x)} \alpha(x) и {\displaystyle \beta (x)} \beta(x) (либо, что не важно для определения, бесконечно малые последовательности).

Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=0} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=0, то {\displaystyle \beta } \beta — бесконечно малая высшего порядка малости, чем {\displaystyle \alpha } \alpha . Обозначают {\displaystyle \beta =o(\alpha )} \beta =o(\alpha ) или {\displaystyle \beta \prec \alpha } \beta\prec\alpha.

Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=\infty } \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=\infty , то {\displaystyle \beta } \beta — бесконечно малая низшего порядка малости, чем {\displaystyle \alpha } \alpha . Соответственно {\displaystyle \alpha =o(\beta )} \alpha =o(\beta ) или {\displaystyle \alpha \prec \beta } \alpha\prec\beta.

Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=c} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=c (предел конечен и не равен 0), то {\displaystyle \alpha } \alpha и {\displaystyle \beta } \beta являются бесконечно малыми величинами одного порядка малости. Это обозначается как {\displaystyle \alpha \asymp \beta } \alpha\asymp\beta или как одновременное выполнение отношений {\displaystyle \beta =O(\alpha )} \beta =O(\alpha ) и {\displaystyle \alpha =O(\beta )} \alpha =O(\beta ). Следует заметить, что в некоторых источниках можно встретить обозначение, когда одинаковость порядков записывают в виде только одного отношения «о большое», что является вольным использованием данного символа.

Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha ^{m}}}=c} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha ^{m}}}=c (предел конечен и не равен 0), то бесконечно малая величина {\displaystyle \beta } \beta имеет {\displaystyle m} m-й порядок малости относительно бесконечно малой {\displaystyle \alpha } \alpha .

Для вычисления подобных пределов удобно использовать правило Лопиталя.

4,4(37 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ