По формуле привидения раскрываешь вторую степень и получаешь: 4^-sinx. Далее 4^sinx берешь за t, откуда получаешь: t+1\t=5\2 2t^2-5t+2=0 Далее высчитываешь, получаешь два корня: 2, которые не может быть, т.к синус принадлежит [-1;1] и 1\2. sin=x=1\2, тогда х=П\6+2Пn; х=5П\6+2Пк. Ну и там уже выбираешь корни.
Из пункта M в пункт N, расстояние между которыми равно 18 км, вышли одновременно два туриста. Один из них прибыл в пункт N на 54 мин позже, чем другой. Найдите скорость каждого туриста, если известно, что скорость одного из них на 1 км/ч меньше, чем скорость другого. скорость одного х, другого (х-1)
18/(х-1 ) - 18/х = 54/60
18х - 18х+18 -0,9х(х-1)=0
-0,9х²+0,9х +18=0 разделим каждый член на (-0,9)
х²-х-20=0
Д=81
х=5 и х=-4 это по смыслу не подходит
ответ:5 км/ч первого туриста, (5-1)=4 км,ч другого туриста
C-точка встречи AC=x CB=280-x T1=1ч30мин=3/2 ч Т2=2ч40мин=2 +40/60=2 2/3=8/3 S=VT V=S/T V1=(280-x)/3/2=2(280-x)/3 V2=x/8/3=3x/8 и заметим что до встречи они проехали одинаковое время AC/V1=CB/V2 x : 2(280-x)/3 = (280-x) : 3x/8 3x/2(280-x)=8(280-x)/3x 9x²=16(280-x)² так как все везде положительное то не будем делвть сложных возведений в степень ( хотите сделайте) а вместо этого возьмем корень слева справа 3x=4(280-x) 3x=4*280-4x 7x=4*4*70 x=160 встретились на расстояние от А V2=3*160.8=60 км ч V1=2*120/3=80 км ч T=280/(60+80)=2 часа
Немного нетривиальная задача Немного повозится надо ПЕрвое что они ехали одно и тоже время до встречи и аккуратно расписать все скорости и времена
Sinx=у
sin(pi+x)=-у4^у+4^(-у) =5/2 4^у=t
4^(-у)=1/t
t+1/t =5/2
t^2-5t/2+1 =1
d=25/4-4=9/4
t1=(5/2+3/2)/2=2; 4^у1=2; у1=0,5; sinx1=0,5; x1 {pi/6+2*pi*k; 5pi/6+2*pi*k}
t2=(5/2-3/2)/2=1/2; 4^у2=1/2; у2=-0,5; sinx2=-0,5; x2 {7pi/6+2*pi*k; 11pi/6+2*pi*k}
на участке [2pi+pi/2;4pi]расположены корни
{5pi/6+2*pi; 7pi/6+2*pi; 11pi/6+2*pi}
или
{17pi/6; 19pi/6; 23pi/6} – это ответ