Уравнение касательной y = f ’(x0) · (x − x0) + f (x0)
Здесь f ’(x0) — значение производной в точке x0, а f (x0) — значение самой функции.
Значение функции в точке х = 2:
f(2) = 2-3*2² = 2-12 = -10.
Производная функции равна f'(x) = 1-6x.
В точке Хо = 2 её значение f'(2) = 1-6*2 = -11.
Уравнение касательной: у = -11(х-2)-10 или, раскрыв скобки,
у = -11х+22-10 = -11х+12.
B2) Даны уравнения функции y=0,5x^4-x и касательной к её графику
y=-(3/4)x-(3/32).Лінійні рівняння з двома змінними
Лінійним рівнянням з двома змінними та називається рівняння виду (або виду ).
Приклад :
лінійні рівняння.
Якщо в лівій частині рівняння і , то це рівняння першого степеня з двома змінними.
Приклад:
- лінійне рівняння.
- рівняння першого степеня з двома змінними.
Розв'язком рівняння з двома змінними і називається кожна пара чисел ( ; ), яка перетворює це рівняння на правильну числову рівність.
Приклад:
Для рівняння пара ( 1; 2) є розв'язком, оскільки при і одержуємо - правильна рівність. Пара (0; 1) не є розв'язком заданого рівняння, оскільки при і одержуємо ; - неправильна рівність.
Два рівняння з двома змінними називаються рівносильними, якщо вони мають одні й ті самі розв'язки або обидва рівняння не мають розв'язків.
Приклад:
Рівняння і - рівносильні.
Властивості рівносильних рівнянь з двома змінними
Якщо обидві частини рівняння з двома змінними помножити або поділити на одне і те саме число, яке не дорівнює нулю, то одержимо рівняння , рівносильне даному.
Приклад :
Рівняння і - рівносильні (друге можна одержати з першого множенням на 2).
Якщо будь-який член рівняння з двома змінними перенести з однієї частини рівняння в іншу з протилежним знаком, то одержимо рівняння, рівносильне даному.
Приклад:
Рівняння і - рівносильні.
Графік лінійного рівняння з двома змінними
На координатній площині графіком лінійного рівняння називається множина точок, координати яких задовольняють даному рівнянню.
Якщо чи , графіком заданого рівняння є пряма, і для її побудови досить отримати будь - які дві точки цієї прямої.
Приклад :
Графіком рівняння є пряма
Якщо і , графіком заданого рівняння є пряма, паралельна осі
Приклад :
Графіком рівняння є пряма
Якщо і , графіком заданого рівняння є пряма, паралельна осі
Приклад :
Графіком рівняння є пряма .
- + y'
----------------|-------------->x
убыв 3 возр y
ответ: функция убывает на (-∞;3), возрастает на (3;+∞).