4х² - 1 > 0 в левой части неравенства - функция: парабола, ветви вверх, она пересекает ось ОХ в точках (-0.5) и (0.5) (это корни) т.к. ветви параболы "вверх", следовательно, значения функции (а это значения у ) положительны, если x < -0.5 или x > 0.5 это можно проверить, подставив х=-1: 4*(-1)² - 1 = 4-1 >0 х=-2: 4*(-2)² - 1 = 16-1 >0 х=1: 4*1² - 1 = 4-1 >0 х=3: 4*3² - 1 = 36-1 >0 а "между корнями" (в промежутке (-0.5; 0.5)) значения функции будут отрицательными: х=0: y=4*0² - 1 = -1 <0 х=1/3: y=4*(1/3)² - 1 = (4/9)-1 = -5/9 <0
Пусть а - первое число, тогда (а+1) - второе число, (а+2) - третье число. а² - квадрат первого числа, (а+1)(а+2) - произведение второго и третьего чисел. По условию задачи квадрат меньшего из них на 47 меньше произведения двух других. Составляем уравнение (а+1)(а+2)-a²=47; a²+2a+a+2-a²=47; 3a+2=47; 3a=47-2; 3a=45; a=45/3=15. Первое число равно 15, второе число равно 15+1=16, третье число равно 15+2=17. ответ: 15; 16; 17. Схема задачи: Дано: а, а+1, а+2 - последовательные натуральные числа Известно: а² - квадрат меньшего числа, (а+1)(а+2) - произведение двух других, 47 - разность произведения двух других чисел и меньшего числа Уравнение: (а+1)(а+2)-а²=47 Решение уравнения: см. выше ответ: 15; 16; 17.
(1-2x)(1+2x)<0
1-2x=0⇒2x=1⇒x=0,5
1+2x=0⇒2x=-1⇒x=-0,5
_ + _
(-0,5)(0,5)
x∈(-∞;-0,5) U (0,5;∞)