ответ
1) 63/65; 2) -√2/10; 3) √((9+√80)/18); 4) -2√2
1) Косинус разности
cos(a - b) = cos a*cos b + sin a*sin b.
У нас a = arcsin(3/5); sin a = 3/5;
cos a = √(1 - sin^2 a) = √(1 - 9/25) = √(16/25) = 4/5
b = arcsin(5/13); sin b = 5/13;
cos b = √(1 - sin^2 a) = √(1 - 25/169) = √(144/169) = 12/13
sin a = 3/5; sin b = 5/13
Получаем
cos(a - b) = 4/5*12/13 + 3/5*5/13 = 48/65 + 15/65 = 63/65
2) Синус суммы
sin(a + b) = sin a*cos b + cos a*sin b
У нас a = arcctg(1/2); tg a = 1/2;
sin a = √5/5; cos a = 2√5/5.
Проверяем: sin^2 a + cos^2 a = 5/25 + 4*5/25 = 1/5 + 4/5 = 1. Все верно.
Точно также b = arcctg(-1/3); tg b = -1/3;
sin b = √10/10; cos b = -3√10/10
sin^2 b + cos^2 b = 10/100 + 9*10/100 = 1/10 + 9/10 = 1. Все верно.
Получаем
sin(a + b) = √5/5*(-3√10)/10 + 2√5/5*√10/10 = -3√50/50 + 2√50/50 = -√50/50 = -√2/10
3) Косинус половинного угла
cos (a/2) = √((1 + cos a)/2)
У нас a = arcsin(1/9); sin a = 1/9;
cos a = √(1 - sin^2 a) = √(1 - 1/81) = √(80/81) = √80/9
cos (a/2) = √((1 + √80/9)/2) = √((9 + √80)/18)
4) tg a = sin a / cos a
У нас a = arccos(-1/3); cos a = -1/3;
sin a = √(1 - cos^2 a) = √(1 - 1/9) = √(8/9) = √8/3
tg a = (√8/3) / (-1/3) = -√8/3 * 3 = -√8 = -2√2
Пусть в турнире участвовало N человек.
Каждый сыграл в турнире N-1 партию (со всеми, кроме себя), т.е. все вместе сыграли N*(N-1) партий.
НО! Каждая партия игралась двумя участниками, т.е. при первом подсчета мы каждую отдельно сыгранную партию посчитали два раза (для первого участника и для второго), следовательно общее число сыгранных партий будет равно N*(N-1)/2.
Поскольку в шахматной партии разыгрывается ровно одно очко, то всего очков в турнире было разыграно столько, сколько было сыграно партий, т.е. N*(N-1)/2.
Игрок, занявший первое место выиграл все партии, а сыграл он N-1 партию, значит и очков он набрал ровно столько.
Следуя этим заключениям можем записать уравнение:
5*(N-1) = N*(N-1)/2 - (N-1)
Количество очков первого игрока, умноженное на пять, равно общему числу очков без учета набранных первым (т.е. количеству очков, набранных остальными участниками).
Теперь осталось решить уравнение. Делим его на (N-1).
5 = N/2 - 1
Вполне очевидно, что N>1, поэтому выполненное деление вполне допустимо (делим не на ноль).
N/2 = 6
N=12
Т.е. всего участников в турнире было 12
Победитель набрал 11 очков из 66 возможных, т.е. в 5 раз больше чем остальные.
ответ: 12 человек участвовало в турнире.
y'=4x-8 4x-8=0 x=2 min y(2)=8-16+6= -2
y(-1)=2+8+6=16
y(4)=32-32+6=6
наименьшее -2
наибольшее 16