1.
1) x^2+8x+15=0
Запиши у вигляді суми
x^2+5x+3x+15=0
Розклади вирази на множники
x×(x+5)+3(x+5)=0
Розклади вираз на множники
(x+5)×(x+3)=0
Розклади на можливі випадки
x+5=0
x+3=0
Розв'яжи рівняння
Відповідь: x1 = -5; x2= -3
(Далі робиш по такому же принципу)
2) 2x^2-3x+1=0
2x^2-x-2x+1=0
x×(2x-1)-(2x-1)=0
(2x-1)×(x-1)=0
2x-1=0
x-1=0
Відповідь: x1 = 0,5; x2=1
3) -3x^2+2x+1=0
3x^2-2x-1=0
3x^2+x-3x-1=0
x×(3x+1)-(3x+1)=0
(3x+1)×(x-1)=0
3x+1=0
x-1=0
Відповідь: x1= -1/3; x2= 1
4) x^4+5x^2-36=0
(t=x^2)
t^2+5t-36=0
t= -9
t=4
x^2= -9
x^2= 4
Відповідь: x1= -2; x2= 2
2.
1) x^2-2x-8
x^2+2x-4x-8
x×(x+2)-4(x+2)
(x+2)×(x-4)
2) 2x^2-5x+3
2x^2-2x-3x+3
2x×(x-1)-3(x-1)
(x-1)×(2x-3)
3.
1) x^2+8x-9/2x+18
x^2+9x-x-9/2(x+9)
x×(x+9)-(x+9)/2(x+9)
(x+9)×(x-1)/2(x+9)
x-1/2
2) x^2-2x-8/x^2-16
x^2+2x-4x-8/(x-4)×(x+4)
x×(x+2)-4(x+2)/(x-4)×(x+4)
(x+2)×(x-4)/(x-4)×(x+4)
x+2/x+4
4.
1) m^3+2m^2-8m/m^2+4m
m×(m^2+2m-8)/m×(m+4)
m×(m+4)-2(m+4)/m+4
(m+4)×(m-2)/m+4
m-2
Якщо m = -1, то:
-1-2= -3
Відповідь: -3
5x+3(x+8)<10(x-1)
5x+3x+24<10x-10
8x-10x<-10-24
-2x<-34
-x<-17
x>17
x∈(17;+∞), x≠17
17
° +∞
{x-y=4, => x=y+4
{xy+y²=6 => (y+4)y+y²=6
y²+4y+y²=6
2y²+4y=6 |2
y²+2y=3
y²+2y-3=0
y₁+y₂=-2
y₁*y₂=-3
y₁=-3
y₂=1
x₁=-3+4=1
x₂=1+4=5
ответ: (1;-3), (5;1)
Сравнить: 0,4·10^{-3} и 4,1· 10^{-4}
4·10^{-3}=0.4/10^3=4/10/10^3=4/10^4
4,1· 10^{-4}=4.1/10^4
4 < 4.1 => 0,4·10^{-3} < 4,1· 10^{-4}