М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
seperpro
seperpro
12.02.2023 02:38 •  Алгебра

Бакалейщик купил ящик с апельсинами за 3,6 долларов. в ящике их было 12 дюжин. он знает, 2 дюжины испортятся еще до того, как он продаст все апельсины по какой цене ему нужно продавать апельсины, чтобы получить прибыль в 1/3 закупочной цены?

👇
Ответ:
valeriya210322
valeriya210322
12.02.2023
(12*12-2*12)*price=3.6+(3.6*1/3)
 12(12-2)*p=3.6(1+1/3)
   10p=0.3*4/3
    100p=3*4/3
    100p=4
    p=0,04                 4 цента

p-price-цена за 1шт
4,6(44 оценок)
Ответ:
Zhenkyaaaa
Zhenkyaaaa
12.02.2023
1/3 • 3,6 = 1/3 • 36/10 = 12/10 = 1,2 ( $ ) прибыль
3,6 + 1,2 = 4,8 ( $ ) общая стоимость
12 - 2 = 10 ( дюжин ) реальный вес
4,8 : 10 = 0,48 ( $ ) продажная цена за 1 дюжину
0,48 : 12 = 0,04 ( $ ) за один апельсин
4,4(1 оценок)
Открыть все ответы
Ответ:
PrOFy100
PrOFy100
12.02.2023
1) а3·а5 = а2
   а1 + а8 = 2
S7-?
(а1+ 2d)(a1 +4d) = a1 +d      a1² + 6a1d + 8d² = a1 +d
a1 + a1 +7d = 2                      2a1 +7d = 2⇒
Делаем подстановку:  а1 = (1 - 3,5d)
(1 - 3,5d)² + 7·(1 - 3,5d)·d + 8d² = 1 -3,5d +d
1 - 7d + 12,25d² +7d - 24,5d = 1 -3,5d + d
1 - 7d + 12,25d² +7d - 24,5d - 1 + 3,5d - d=0
12,25 d² -21d = 0|: d≠0
12,25d = 21
d = 21/12,25
d = 1  5/7
а1 = 1-3,5·1 5/7 = 1 - 6 = -5
S7 = (2a1 +6d)·7/2= (a1 +3d)·7 = (-5 + 36/7)·7= -35 +36 = 1
2) b1q^4 + b1q - b1q^3 = 66
    b1q^5 + b1q^2 - b1q^4 = -132 
4,5(62 оценок)
Ответ:
Xonus
Xonus
12.02.2023

2. Исследуем функцию на монотонность и на экстремум:

Критические точки функции:

,

,

Определим знак производной в каждом интервале монотонности:

, точка max, так как производная  изменила знак с "+" на "−",

, точка min, так как производная  изменила знак с "−" на "+".

Вычислим сам экстремум функции в этих точках:

3. Исследуем функцию на выпуклость, вогнутость кривой и перегиб:

Критические точки: , , ,  

Определим знак II производной в интервале кривизны:

, значит, кривая выпуклая на промежутке,

, значит, кривая вогнутая на промежутке;

Вычислим ординату точки перегиба:

4. Найдём дополнительные точки графика:

По результатам исследования строим график функции:

Пример 2. Исследовать функцию по первой и второй производной и построить её график:  .

1. Область определения функции ,

точка разрыва, чтобы определить её характер, найдём правосторонний и левосторонний пределы функции в этой точке:

Значит,  точка разрыва рода,

прямая  вертикальная асимптота графика функции.

Найдём наклонную асимптоту графика:

где угловой коэффициент прямой найдём по формуле

Так как  существует, то есть и наклонная асимптота. Вычисляем коэффициент b:

Значит, наклонная асимптота графика имеет уравнение .

2. Исследуем функцию на монотонность и на экстремум:

, учтем правило дифференцирования  

Критические точки функции:

,  , , , х=2,

4,6(47 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ