4
Объяснение:
1) Если две стороны треугольника равны 3 и 5, то его третья сторона больше 3.
Пусть а третья сторона, то по неравенству треугольника сумма любых двух сторон больше третьей стороны:
а+3>5
a+5>3 - выполнено
3+5>a
Тогда 3+5=8>а>5-3=2, и достаточно а>2, например а=2,1. Поэтому утверждение НЕВЕРНО!
2) Внешний угол треугольника равен сумме двух его внутренних углов.
Утверждение НЕВЕРНО, так как внешний угол треугольника равен сумме его внутренних, не смежных с ним, углов.
3) Если две стороны и угол одного треугольника соответственно равны двум сторонам и углу другого треугольника, то такие треугольники равны.
Утверждение НЕВЕРНО, так как по первому признаку равенства треугольников необходимо "угол между ними".
4) Если две стороны треугольника равны 3 и 4, то его третья сторона меньше 7.
Пусть а третья сторона, то по неравенству треугольника сумма любых двух сторон больше третьей стороны:
а+3>4
a+4>3 - выполнено
3+4>a
Тогда 3+4=7>а>4-3=1, и поэтому утверждение ВЕРНО.
Пусть третье слагаемое х, тогда второе слагаемое 3х, а третье слагаемое 2(3х). Зная, что сумма трёх слагаемых равна 80, составлю и решу уравнение:
х+3х+2(3х)=80
х+3х+6х=80
10х=80
х=80/10
х=8
Итак, третье слагаемое равно 8, второе слагаемое : 8*3=24, первое слагаемое : 24*2=48
ответ: 8, 24, 48