В решении.
Объяснение:
С графика функции y=x² (рис. 6) найдите приближенные значения корней уравнения:
а) х²= 2;
Поскольку у=х², а х²=2, значит, нужно искать значение х при у=2.
Из точки оси Оу у=2 проводим перпендикуляр вправо, до пересечения с графиком, потом из точки пересечения опускаем перпендикуляр вниз, до оси Ох. Это и будет искомое значение х.
х ≈ 1,4;
б) х² = 7;
Здесь из точки у=7 на оси Оу проводим перпендикуляр вправо, до пересечения с графиком, потом из точки пересечения опускаем перпендикуляр вниз, до оси Ох. Это и будет искомое значение х.
х ≈ 2,6;
в) х² = 5,5
Здесь из точки у=5,5 на оси Оу проводим перпендикуляр вправо, до пересечения с графиком, потом из точки пересечения опускаем перпендикуляр вниз, до оси Ох. Это и будет искомое значение х.
х ≈ 2,3.
9+9+0=18 (990, 909 - два числа)
9+8+1=18 (шесть чисел 981, 918, 819, 891, 189, 198)
9+7+2 (шесть чисел)
9+6+3 (шесть чисел)
9+5+4 (шесть чисел)
8+8+2 (288, 828, 882 - три числа)
8+7+3 (шесть чисел)
8+6+4 (шесть чисел)
8+5+5 (три числа)
7+7+4 (три числа)
7+6+5 (шесть чисел)
6+6+6 (одно число)
трехзначных чисел - 54 , сумма которых равна 18
первое трехзначное число 100, последнее 999
999=100+(n-1)*1
999-100=n-1
899=n-1
n=900
всех трехзначных чисел 900
по\тому искомая вероятность равна 54/900=0.06
х∈(-∞;1]
2) √(9x²-6x+1) =√(3x-1)² =+/-(3x-1) при х<0,3
9х²-6x+1=(3x-1)² 0,3
x∈(-∞;0,3)