М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vanyaevsik
vanyaevsik
16.04.2022 08:22 •  Алгебра

Вубывающей прогрессии, состоящей из трёх чисел, третий член равен 24. если вместо третьего числа поставить 18, то образуется арифметическая прогрессия. найдите первое число прогрессии

👇
Ответ:
Tugoi
Tugoi
16.04.2022
Решение во вложениях......
Вубывающей прогрессии, состоящей из трёх чисел, третий член равен 24. если вместо третьего числа пос
Вубывающей прогрессии, состоящей из трёх чисел, третий член равен 24. если вместо третьего числа пос
4,4(47 оценок)
Открыть все ответы
Ответ:
75545
75545
16.04.2022
Пусть неизвестное целое число равно х, 
тогда х-1 и х+1 - целые числа, расположенные слева и справа
 от числа х, соответственно.
По условию, сумма квадратов данных чисел равна 869.
Составим уравнение:
(х-1)²+х²+(х+1)²=869
х²-2х+1+х²+х²+2х+1=869
3х²+2=869
3х²=869-2
3х²=867
х²=867:3
х²=289
х=б \sqrt{289}
x=б17

1) x=17
    x-1=17-1=16
    x+1=17+1=18
    Получаем, 16, 17 и 18 - три последовательных целых числа
    Проверка: 16²+17²+18²=256+289+324=869
2) х=-17
    х-1=-17-1=-18
    х+1=-17+1=-16
    Получаем, -18, -17 и -16 - три последовательных целых числа
    Проверка:(-18)²+(-17)²+(-16)²=324+289+256=869

ответ: 16, 17 и 18;  -18, -17 и -16
4,8(14 оценок)
Ответ:
Ученик132312
Ученик132312
16.04.2022
Число при делении на 5 дает в остатке 3 только если оно заканчивается на 3 или на 8. Докажем что ни одно целое число в квадрате не заканчивается ни на 3, ни на 8.

если число закачивается на 0, то в квадрате оно  заканчивается на 0
если число закачивается на 1, то в квадрате оно  заканчивается на 1
если число закачивается на 2, то в квадрате оно  заканчивается на 4
если число закачивается на 3, то в квадрате оно  заканчивается на 9
если число закачивается на 4, то в квадрате оно  заканчивается на 6
если число закачивается на 5, то в квадрате оно  заканчивается на 5
если число закачивается на 6, то в квадрате оно  заканчивается на 6
если число закачивается на 7, то в квадрате оно  заканчивается на 9
если число закачивается на 8, то в квадрате оно  заканчивается на 4
если число закачивается на 9, то в квадрате оно  заканчивается на 1

все, вариантов не осталось. Доказано.
4,4(17 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ