М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Kyki510
Kyki510
19.06.2020 08:59 •  Алгебра

Все ! множество, состоящее из шести элементов x1, x2, x3, x4, x5, x6, упорядочили всеми возможными в скольких случаях: г)элемент x1 будет первым,а элемент x6 не будет последним; д)элемент x1 будет стоять рядом с элементом x6; е)элемент x1 не будет стоять рядом с элементом x6; ж)элемент x1 будет стоять перед элементом x6. и - с объяснениями,это самое главное! ибо я выучил теорию,нормально прорешал предыдущие по этой теме,но тут тупик абсолютный,просто в упор ничего не

👇
Ответ:
papapapapap
papapapapap
19.06.2020
Г) использую факт: если есть n объектов, то их можно упорядочить
Поставим x1 на первое место и забудем про него. Надо расставлять оставшиеся 5 элементов.
- Если расставлять элементы как угодно, получится 5! = 120 вариантов.
- Если x6 поставить на последнее место, то остальные 4 элемента можно распределить
Тогда, число расставить так, что x6 не на последнем месте, равно 5! - 4! = 96.

ж) Если "перед" означает "сразу перед": можно "склеить" элементы x1 и x6 вместе, и распределять новый "склеенный" элемент и остальные 4 элемента произвольно. 5 элементов можно упорядочивать 5! = 120 вариантами.
Если "перед" допускает, что x1 и x6 стоят не подряд: очевидно, в каждой расстановке какой-то из элементов стоит перед другим, при этом число комбинаций, когда x1 стоит перед x6, равно числу комбинаций, когда x6 стоит перед x1. Тогда x1 стоит перед x6 ровно в половине случаев. 6 элементов можно расставить тогда ответ 6! / 2 = 360.

д) x1 и x6 стоят рядом = x1 стоит сразу перед x6 ИЛИ x6 стоит сразу перед x1
Число в первом и втором случае, очевидно, равны и уже рассчитаны в предыдущем пункте. ответ: 2 * 5! = 240.

е) Если всего есть упорядочить, и рядом элементы стоят в 2 * 5! случаях, то упорядочить так, что элементы стоят не рядом, ровно 6! - 2 * 5! = 4 * 5! = 480.
4,4(83 оценок)
Открыть все ответы
Ответ:
alina050804alina
alina050804alina
19.06.2020
Решить графически уравнение вида
f(x)=g(x),
значит построить графики двух функций у=f(x) и  у=g(x)
и найти точки пересечения этих графиков.

1) Построить параболу у=х²
по точкам (-4;16) (-3;9) (-2;4) (-1;1) (0;0) (1;1) (2;4) (3;9) (4;16) и соединить эти точки точки плавной линией от первой до последней.

Построить прямую у=9. Это прямая проходит через точку (0;9) и параллельна оси ох.

Два графика пересекутся в точке,  у которой первая координата по оси х равна -3 и в точке, у которой первая координата по оси х равна 3.
О т в е т. х=-3; х=3.

2) Аналогично

Построить параболу у=х²
по точкам (-4;16) (-3;9) (-2;4) (-1;1) (0;0) (1;1) (2;4) (3;9) (4;16) и соединить эти точки точки плавной линией от первой до последней.

Построить прямую у=4. Это прямая, проходит через точку (0;4) и параллельна оси ох.

Два графика пересекутся в точке,  у которой первая координата по оси х равна -2 и в точке, у которой первая координата по оси х равна 2.
О т в е т. х=-2; х=2.
4,5(18 оценок)
Ответ:
lovedeutschlan
lovedeutschlan
19.06.2020
1) Ставим 1 том первым. Вторым может быть любой, кроме 4.
Это 4 варианта. Остальные 4 тома ставим как угодно. Это 24 варианта.
Всего 24*4 = 96 вариантов.
2) Ставим 1 том вторым. Первый - любой, кроме 4. Это 4 варианта. Третьим - тоже любой оставшийся, кроме 4. Это 3 варианта.
Остальные 3 тома как угодно. Это 6 вариантов.
Всего 4*3*6 = 72 варианта.
3) Ставим 1 том третьим. Первый - какой угодно, это 5 вариантов.
Второй - любой, кроме 4. Это 3 варианта.
Четвертый - тоже любой, кроме 4. Это 2 варианта.
Пятый и шестой - какие угодно. Это 2 варианта.
Всего 5*3*2*2 = 60 вариантов.
4) Ставим 1 том четвертым. Это аналогично 3). 60 вариантов.
5) Ставим 1 том пятым. Это аналогично 2). 72 варианта.
6) Ставим 1 том последним. Это аналогично 1). 96 вариантов.
Итого 96 + 72 + 60 + 60 + 72 + 96 = 396 вариантов.
4,5(28 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ