Х - первое число, где х - натуральное число х+1 - второе число х+2 - третье число х^2+65=(х+1)(х+2) х^2+65=х^2+3х+2 3х=63 х=21 21 - первое число 22 - второе число 23 - третье число
Любое нечётное число можно записать в виде 2n-1, где n∈z (множество целых чисел). у нас три последовательных нечётных числа. каждое последующее нечётное число на 2 больше предыдущего (например, 1, 3, 5, 7 и так далее). обозначим минимальное из наших чисел 2n-1. тогда следующее будет 2n-1+2=2n+1, а последнее 2n+1+2=2n+3. эти числа в порядке возрастания расположатся, очевидно: 2n-1; 2n+1; 2n+3. по условию : (2n+1)(2n+-1)(2n+1)=76 (2n+1)(2n+3-(2n-=0 (2n+1)(2n+3-2n+1)-76=0 (2n+1)4-76=0 8n+4-76=0 8n-72=0 n=72/8 n=9 тогда искомые числа будут: 2n-1=2*9-1=18-1=17 2n+1=2*9+1=18+1=19 2n+3=2*9+3=18+3=21
Если А и А+1 оба делятся на 8, значит младшая цифра числа А обязана быть 9, чтобы был перенос в разряд десятков при добавлении 1 (если бы переноса не было, то суммы цифр чисел А и А+1 тоже отличалась бы на 1 и, значит, обе суммы одновременно не могли бы делиться на 8). Если средняя цифра равна 1, то условие 3) будет автоматически выполнено, потому что любое целое число кратно единице. Тогда, чтобы сумма цифр делилась на 8, первую цифру можно взять 6: получается число A=619, 1) Сумма цифр А равна 6+1+9=16 - делится на 8 2) А+1=620. Его сумма цифр равна 6+2=8 - делится на 8. 3) 6+9=15 кратно 1.
составляем уравнение и решаем его:
21 - 1 число
2 число: 21+1=22
3 число: 22+1=23
ответ: 21; 22; 23