x²-(√6-√24)x-12=0
1) Упростим выражение (√6-√24).
√6-√24 = √6-√(4·6) = √6-2√6 = - √6
2) Подставим в данное уравнение и получим:
x² - (-√6)x - 12 = 0
x² + √6x - 12 = 0
3) Решаем уравнение
x² + √6x - 12 = 0
D = 6 - 4·1·(-12) = 6 + 48 = 54
√D = √54 = √(9·6) = 3√6
x₁ = (- √6 - 3√6)/2 = - 4√6/2 = - 2√6
x₂ = (- √6 + 3√6)/2 = 2√6/2 = √6
4) Находим целые числа, заключенные между корнями уравнения
x₁ = - 2√6 ≈ - 4,9
x₂ = √6 ≈ 2,45
{- 4; - 3; - 2; - 1; 0; 1; 2}
И, наконец, находим их сумму:
- 4 - 3 - 2 - 1 + 0 + 1 + 2 = - 7
ответ: - 7.
Ниже будут общие формулы для решений тригонометрических уравнений (для sinx и cosx |a| < 1, a ≠ 0)
sinx = a
x = (-1)ⁿarcsina + πk, k ∈ Z
sinx = -a
x = (-1)ⁿ⁺¹arcsina + πk, k ∈ Z
cosx = a
x = ±arccosa + 2πk, k ∈ Z
cosx = -a
x = ±(π - arccosa) + 2πk, k ∈ Z
tgx = a
x = arctga + πk, k ∈ Z
tgx = -a
x = -arctga + πk, k ∈ Z
ctgx = a
x = arcctga + πk, k ∈ Z
ctgx = -a
x = -arcctga + πk, k ∈ Z
Особые случаи:
sinx = -1
x = -π/2 + 2πk, k ∈ Z
sinx = 0
x = πk, k ∈ Z
sinx = 1
x = π/2 + 2πk, k ∈ Z
cosx = -1
x = π + 2πk, k ∈ Z
cosx = 0
x = π/2 + πk, k ∈ Z
cosx = 1
x = 2πk, k ∈ Z
tgx = -1 и ctgx = -1 равносильны:
x = -π/4 + πk, k ∈ Z
tgx = 0
x = πk, k ∈ Z
ctgx = 0
x = π/2 + πk, k ∈ Z
tgx = 0
x = πk, k ∈ Z
tgx = 1 и ctgx = 1 равносильны:
x = π/4 + πk, k ∈ Z
P.s.: наименьший положительный период синуса и косинуса - 2π, тангенса и котангенса - π.