Понимаем, что попадание первым стрелком р1, непопадание q1, причем p1+q1=1 Так же р2+q2=1 Событие А -"цель поражена один раз:либо первым, а вторым нет; либо вторым, а первым нет" Его вероятность равна сумме произведений р1 ·q2+q1·p2 По условию это равно 0,46.
Событие В - цель не поражена ни разу Его вероятность q1·q2 и по условию его вероятность равна 0,42. Рассмотрим ещё событие С- попадание хотя бы один раз. Оно противоположно событию В и его вероятность равна 1-0,42=0,58 С состоит из А и события "попадание оба раза" значит р1·р2+р1 ·q2+q1·p2=0,58. Имеем три уравнения и из них найдем р1·р2=0,58-0,46 р1·р2=0,12 Это возможно, если р1=0.2, р2=0,6 или вторая пара р1=0,3 ; р2=0,4 тогда q1=0,8; q2=0,4 или пара q1=0,7; q2=0,6 Учитывая, что вероятность события В равна 0,42. Подходит вторая пара. ответ р1=0,3; р2=0,4 р1= ; р2= ;
Длину дистанции обозначим S м. Скорость Маши v(M) = S/35 м/мин Скорость Коли v(K) = S/28 м/мин Их скорости относятся друг к другу v(K):v(M) = 35:28 = 5:4 Если бы они начали одновременно, то Коля пробежал бы 5/9 пути, а Маша 4/9 пути, т.е. часть 0,8 от пути Коли. А на самом деле Маша пробежала 0,75 от пути Коли. Коля пробежал x м, а Маша на 1/4 меньше Коли, т.е. 0,75x м. А вместе они пробежали S = x + 0,75x = 1,75x = 7x/4 x = 4/7*S - путь Коли; 0,75x = 3/7*S - путь Маши. 3/7 = 27/63 < 4/9 = 28/63, значит Маша пробежала меньше, чем могла бы, если бы они начали одновременно. Значит, Коля начал раньше. Пусть Коля начал раньше на а мин. Значит, когда Маша начала, он уже пробежал а/35 часть пути. Осталось (35-a)/35 часть. Коля пробежал 5/9 от этой части. Это будет (35-a)/35*5/9 = 5(35-a)/315 - пробежал Коля от старта Маши до встречи. А всё вместе он пробежал 4/7 пути. a/35 + 5(35-a)/315 = 4/7 Умножаем всё на 315 = 35*9 = 45*7 9a + 175 - 5a = 4*45 = 180 4a = 5 a = 5/4 Ближе всего это к 1 мин. Видимо, правильный ответ: Г) Коля на 1 мин раньше.
b≠-a 3*1.7=5.1 2b=-3 5.1+3=8.1 a+b=1.7-1.5=0.2
8.1/0.2=40.5