Переобразуйте данное целое выражение в произведении многочленов: к)(x-y)*(4x-6y)+(x+1)*(18y-12x)=(x-y)*(4x-6y)-(x+1)*3(4x-6y)=2(2x-3y)(x-y-3x-3)=2(2x-3y)(-2x-y-3)=-2(2x-3y)(2x+y+3) c)2a(a+2)^2-3b(a+2)=(a+b)(2a(a+b)-3b)=(a+b)(2a^2+2ab-3b) Разложите выражение на множители, используя формулы сокращённого умножения: б)(a-b)^2-c^2=(a-b+c)(a-b-c) н)(a+b)^2-(x+y)^2=(a+b+x+y)(a+b-x-y) e) (m^2-4n)^2-(m^2-2n)^2=(m^2-4n+m^2-2n)(m^2-4n-m^2+2n)=2(m^2-3n)*(-2n)=-4n(m^2-3n) d)(x-2y)^2+4(x-2y)+4=(x-2y+2)^2 z)16m^2-8m(3-m)+(3-m)^2=(4m-3+m)^2=(5m-3)^2 Представьте целое выражение в виде произведения многочленов: д)ax-ya+x-y=x(a+1)-y(a+1)=(a+1)(x-y) о)a^3+5a^2+5a+25=a^2(a+5)+5(a+5)=(a+5)(a^2+5)
Для решения данной системы уравнений мы можем использовать метод подстановки или метод сложения/вычитания уравнений.
Давайте воспользуемся методом сложения/вычитания.
1. Для начала сгруппируем уравнения, чтобы коэффициенты при одинаковых переменных были расположены рядом:
(1) x² + xy - 2y² + 8x + 10y + 12 = 0
(2) x² + 3xy + 2y² - x + y - 6 = 0
2. Далее, умножим уравнение (2) на -1:
-x² - 3xy - 2y² + x - y + 6 = 0
3. Теперь сложим полученное уравнение и уравнение (1):
(1) + (-x² - 3xy - 2y² + x - y + 6) = 0
При сложении, мы получим:
0x² + (-xy - 5y² + 9x + 9y + 18) = 0
11. Получили выражение для переменной y в зависимости от x. Теперь мы можем подставить это выражение в одно из исходных уравнений и решить его относительно x.
3х=63-2
3х=61
х=61÷3
х=20,3
ответ: 20.3