6 (км/час) - скорость первого туриста.
5 (км/час) - скорость второго туриста.
Объяснение:
Из пунктов А и В, расстояние между которыми 33 км, выходят одновременно два туриста и встречаются через 3 часа.
Найти скорость каждого туриста, если турист, вышедший из пункта А на 3 км больше.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х – скорость первого туриста.
у - скорость второго туриста.
3*х – расстояние первого туриста.
3*у – расстояние второго туриста.
Составить систему уравнений согласно условию задачи:
3х+3у=33
3х-3у=3
Разделить оба уравнения на 3 для упрощения:
х+у=11
х-у=1
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х=11-у
11-у-у=1
-2у=1-11
-2у= -10
у= -10/-2
у=5 (км/час) - скорость второго туриста.
х=11-у
х=11-5
х=6 (км/час) - скорость первого туриста.
Проверка:
6*3+5*3=18+15=33;
6*3-5*3=18-15=3, верно.
6 (км/час) - скорость первого туриста.
5 (км/час) - скорость второго туриста.
Объяснение:
Из пунктов А и В, расстояние между которыми 33 км, выходят одновременно два туриста и встречаются через 3 часа.
Найти скорость каждого туриста, если турист, вышедший из пункта А на 3 км больше.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х – скорость первого туриста.
у - скорость второго туриста.
3*х – расстояние первого туриста.
3*у – расстояние второго туриста.
Составить систему уравнений согласно условию задачи:
3х+3у=33
3х-3у=3
Разделить оба уравнения на 3 для упрощения:
х+у=11
х-у=1
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х=11-у
11-у-у=1
-2у=1-11
-2у= -10
у= -10/-2
у=5 (км/час) - скорость второго туриста.
х=11-у
х=11-5
х=6 (км/час) - скорость первого туриста.
Проверка:
6*3+5*3=18+15=33;
6*3-5*3=18-15=3, верно.
x ≠ 0; 1; 2
24/(x² - 2x) = 12/(x² - x) + x² - x
24/(x² - 2x) - 12/(x² - x) = x² - x
(24x² - 24x - 12x² + 24x)/(x(x - 1)(x - 2) = x² - x
12x²/x²(x - 1)(x - 2) = x(x - 1)
12/(x - 1)(x - 2) = x(x - 1)
12 = x(x - 2)(x - 1)²
12 = (x² - 2x)(x² - 2x + 1)
Пусть t = x² - 2x.
12 = t(t + 1)
t² + t - 12 = 0
t₁ + t₂ = -1
t₁t₂ = -12
t₁ = -4; t₂ = 3
Обратная замена:
x² - 2x = 3
x² - 2x - 3 = 0
x² - 2x + 1 - 4 = 0
(x - 1)² - 2² = 0
(x - 1 - 2)(x - 1 + 2) = 0
(x - 3)(x + 1) = 0
x = -1; 3
Вторая замена:
x² - 2x = -4
x² - 2x + 1 + 4 - 1 = 0
(x - 1)² = -3 - нет корней, т.к. квадрат всегда неотрицательный
ответ: x = -1; 3.