f(x) = ( x - 5 ) / ( x² + x - 6 )
Знаменатель дроби не может равняться нулю, значит для любого числа из области определения данной функции должно выполняться условие:
x² + x - 6 ≠ 0
Решим соответствующее квадратное уравнение и узнаем, при каких значениях x, знаменатель дроби равен нулю:
x² + x - 6 = 0
D = 1 + 24 = 25
x₁ = ( - 1 - 5 ) / 2 = - 6 / 2 = - 3
x₂ = (- 1 + 5) / 2 = 4 / 2 = 2
Корни этого уравнения нам говорят о том, что эти числа не подходят к условие, так как при таких значениях x знаменатель принимает значение 0, а значит они не входят в область определения функции.
Область определения функции - все числа кроме - 3 и 2.
Математически это записывается так:
x ∈ ( - ∞ ; - 3 ) ∪ ( - 3 ; 2 ) ∪ ( 2 ; + ∞ ).
Відповідь:
а) ні
б) так
в) так
г) ні
Пояснення:
Очевидно, що після додавання до парного числа або віднімання від нього одиниці, отримаємо НЕпарне, і навпаки. Уявімо, що гарбузи вже розкладено. Тоді числа гарбузів у будь-яких двох сусідніх кошиках матимуть різну парність.
Нехай у колі розставлено НЕпарну кількість кошиків. Пронумеруємо їх, скажімо, за годинниковою стрілкою. Почнемо для зручності з довільного кошика із НЕпарною кількістю гарбузів. Побачимо, що таке саме непарне число гарбузів міститиме 3-ій кошик (бо в другому — парна кількість гарбузів), 5-ий, ..., останній. Виходить, що в наступному кошику, який під номером "1", повинно бути парне число гарбузів. Але насправді воно НЕпарне. Отримали суперечність.
А от якби було розставлено парну кількість кошиків, то непарне число гарбузів, пронумерованих, як у попередньому абзаці, містив би ПЕРЕДостанній кошик. Тоді останній — парну, а наступний за ним, кошик під номером "1" — знов непарну, як ми й домовлялися.
Отже, здійснити те, що описано в умові задачі, можна, лише якщо використати парну кількість кошиків.
9x^2-6x+1=9x^2+9+2x
-6x-2x=9-1
-8x=8
x=-1