P = m/n. Пространство исходов упорядоченные пары чисел от 1 до 6, например: (1;6); (2;3), (6;5) и т.п. Всего таких исходов n = 6*6, A) m = 5*5. P = (5*5)/(6*6) = 25/36 Б) m = 1. Лишь одна пара (6;6) удовлетворяет условию. P = 1/(6*6) = 1/36. В) Удовлетворяет условию следующие исходы: (6,4),(4,6),(5,5), (6,5), (5,6), (6,6). m = 6. P = 6/(6*6) = 1/6. Г) Искомому значению удовлетворяет событие, противоположное предыдущему (В), поэтому ответом будет P = 1 - (1/6) = 5/6. Пояснение к Г) : События В) и Г) взаимно противоположные, т.е. они не пересекаются и в объединении дают все пространство исходов, так что P_в + P_г = 1.
S V t 1-я лодка х км у + 3 км/ч х/(у +3) ч 2-я лодка 111 - х км у - 3 км/ч (111-х)/(у -3)ч х/(у + 3) = 1,5 ,⇒ х = 1,5(у +3) (111-х)/(у -3) = 1,5,⇒ 111 - х = 1,5(у -3) Сложим эти 2 уравнения почленно получим: 111= 1,5(у +3) + 1,5(у -3) 111 = 1,5у +4,4 + 1,у - 4,5 3у = 111 у = 37(км/ч) - собственная скорость лодки х = 1,5(у +3) = 1,5(37 +3) = 1,5*40 = 60(км) -1-я лодка проплыла до встречи 111 - 60 = 51(км) - проплыла 2-я лодка до встречи.
(x - 4)( x + 1) > 0 ; x э ( - бесконечности; - 4) u (1 ; + беск)
2) 9x² - 12x + 4 - 8x² + 12x > 0; x² + 4 > 0; x э ( - беск ; + беск)
3) 1 - 36x² + 35x² - 14x > 14; - x² - 14x -13 > 0; x² + 14x + 13 < 0; x э ( - 13; - 1)