3. (x-4)(x+1)=0⇒x=4 или x= - 1 В этих задачах решение в целых числах ничем не отличается от решений в действительных числах (когда у нас квадратное уравнение, какая разница какие решения мы ищем - по любому нужно вычислять дискриминант или угадывать разложение устно. Специфика целых чисел видна в случае решения уравнения с двумя неизвестными.
Примеры: 1. x^2+y^2=25. Ясно, что |x|≤5; |y|≤5; далее перебор.
2. xy-2x+3y-8=0; (x+3)(y-2)=2 2 как произведение двух целых чисел число 2 получается только в четырех случаях 1·2=2·1=(-1)(-2)=(-2)(-1).
3. (x-4)(x+1)=0⇒x=4 или x= - 1 В этих задачах решение в целых числах ничем не отличается от решений в действительных числах (когда у нас квадратное уравнение, какая разница какие решения мы ищем - по любому нужно вычислять дискриминант или угадывать разложение устно. Специфика целых чисел видна в случае решения уравнения с двумя неизвестными.
Примеры: 1. x^2+y^2=25. Ясно, что |x|≤5; |y|≤5; далее перебор.
2. xy-2x+3y-8=0; (x+3)(y-2)=2 2 как произведение двух целых чисел число 2 получается только в четырех случаях 1·2=2·1=(-1)(-2)=(-2)(-1).
1) 2 ⅓ * 9 = 7/3 *9 =21
2) 1 ⅓ * 3 ¼ =4/3 *13/4 =13/3= 4 1/3
3) 2 2/7 * 3 5/24= 16/7 * 77/24 = 22/3 = 7 1/3
4) 21 - 4 1/3 - 7 1/3 = 21 - 11 2/3= 20 3/3 - 11 2/3 = 9 1/3