Дано:
S₁ – расстояние от села Вишневое до станции
S₂ = S₁ + 14 км – расстояние от села Яблоневое до станции
t₁ = 45 мин = 3/4 ч – время, за которое автобус доезжает от села Вишневое до станции
t₂ = t₁ + 5 мин = t₁ + 1/12 ч – время, за которое автомобиль доезжает от села Яблоневое до станции
V₁ – скорость автобуса
V₂ = V₁ + 12 км/ч – скорость автомобиля
Найти: V₁, V₂
Составим систему уравнений:
{ S₁ = V₁·t₁
{ S₂ = V₂·t₂
Вычтем первое уравнение из второго:
S₂ – S₁ = V₂·t₂ – V₁·t₁
Подставим соотношения из условия задачи:
S₁ + 14 – S₁ = (V₁ + 12)(t₁ + 1/12) – V₁·t₁
14 = V₁ / 12 + 12t₁ + 1
Подставим t₁ = 3/4 ч:
14 = V₁ / 12 + 12·3/4 + 1
14 = V₁ / 12 + 10
V₁ / 12 = 4
V₁ = 48 км/ч – скорость автобуса
Из условия задачи:
V₂ = V₁ + 12 = 48 + 12 = 60 км/ч – скорость автомобиля
ответ: скорость автобуса 48 км/ч, скорость автомобиля 60 км/ч.
корни второго уравнения: х₃ и х₄
х₃=2х₁
по теореме Виета х₁+х₂=5; х₁х₂=р и х₃+х₄=7; х₃х₄=2р,
откуда х₂=5-х₁; х₄=7-х₃. Тогда х₁(5-х₁)=р и х₃(7-х₃)=2р⇒2х₁(7-2х₁)=2р⇒
х₁(7-2х₁)=р.
х₁(5-х₁)=х₁(7-2х₁)⇒5х₁-х₁²=7х₁-2х₁²⇒х₁²-2х₁=0⇒х₁(х₁-2)=0⇒х₁=0; х₁=2
При х₁=0 р=0 и х₃=2×0=0=х₁, что противоречит условию; при х₁=2 р=2(5-2)=6
х²-5х+6=0; х₁=2 и х₂=3
х²-7х+12=0; х₃=4 и х₄=3
х₃=2х₁