Объяснение:
Уравнение касательной имеет вид:
y=f(x_0)+f'(x_0)(x-x_0)y=f(x
0
)+f
′
(x
0
)(x−x
0
)
Дана функция:
f(x)=-x^2-4x+2f(x)=−x
2
−4x+2
Найдём значение функции в точке x₀:
f(x_0)=f(-1)=-(-1)^2-4 \cdot (-1)+2=-1+4+2=5f(x
0
)=f(−1)=−(−1)
2
−4⋅(−1)+2=−1+4+2=5
Найдём производную функции:
f'(x)=-2x^{2-1}-4=-2x-4f
′
(x)=−2x
2−1
−4=−2x−4
Найдём производную функции в точке x₀:
f'(x_0)=f'(-1)=-2 \cdot (-1) -4 =2-4=-2f
′
(x
0
)=f
′
(−1)=−2⋅(−1)−4=2−4=−2
Подставим найденные значения, чтобы найти уравнение касательной:
y=f(x_0)+f'(x_0)(x-x_0)y=f(x
0
)+f
′
(x
0
)(x−x
0
)
y=5+(-2)(x-(-1))y=5+(−2)(x−(−1))
y=5-2(x+1)y=5−2(x+1)
y=5-2x-2y=5−2x−2
\boxed{y=-2x+3}
y=−2x+3
ответ: y=-2x+3 - искомое уравнение.
1. - 1;
2. 1.
Объяснение:
1. (5^2)^6•(5^7 : 5^4) /(-125)^5 = 5^(2•6) • 5^(7-4)/(-5^3)^5 = 5^12 • 5^3/(-5^15) = 5^15/(-5^15) = -1.
(✓при возведении степени в степень основание оставляем прежним, показатели умножаем;
✓при умножении степеней с одинаковыми основаниями основание оставляем прежним, показатели складываем;
✓при делении степеней с одинаковыми основаниями основание оставляем прежним, показатели вычитаем.)
2. ((-3)^9•9^2•81^3)/(-27^10 : 3^5) = ((-3)^9•9^2•81^3)/(-27^10 : 3^5) = -(3^9•(3^2)^2•(3^4)^3)/- ((3^3)^10 : 3^5) = - (3^9•(3^2)^2•(3^4)^3)/- ((3^3)^10 : 3^5) = + (3^9•3^4•3^12)/(3^30 : 3^5) = 3^25/3^25 = 1.