Решение: 1) ОДЗ для данной функции определено на всей числовой прямой (D(f) ∈ R) 2) Функция ни четна, ни нечетна 3) Точки пересечения с осью OX при x₁ = 0; x₂ = 3. Точки пересечения с осью OY в y = 0 4) (x-3)^2 в данной функции будет иметь постоянно положительный знак, т.к. оно находится под квадратом. Значит, знак всей функции зависит только от множителя x. Там, где x>0, функция положительна; соответственно, где x<0, там и y<0. 5) Мы нашли точки экстремума. Теперь найдем промежутки возрастания/убывания функции:
Пусть п = масса песка (первоначальная) , б = масса (первоначальная) всего остального в смеси. Полная масса смеси = п+б (первоначальная) . Т. е. 1) п/(п+б) = 0,3; Добавили еще 12 кг - и стало песка 45%: 2) (п+12)/(п+б+12) = 0,45. Из этих двух уравнений находим первоначальную массу песка (она чуть позже понадобится) : 1) п = 0,3(п+б) -> 0,7п = 0,3б -> б = 7/3*п; 2) (п+12) =0,45(п+б+12); -> п + 12 = 0,45п + 0,45б + 5,4 -> 0,55п = 0,45б - 6,6 -> подставляем б из предыдущего уравнения -> 0,55п = 0,45*7/3*п - 6,6 -> 0,55п = 0,15*7*п - 6,6 -> 0,5п = 6,6 -> п = 13,2 кг. Теперь пусть x - масса песка, которую нужно добавить, чтобы его доля в общей массе смеси была 60%: (п+12+x)/(п+б+12+x) = 0,6; п + 12 + x = 0,6(п+б+12+x); раскрываем скобки: 0,4п + 4,8 + 0,4x = 0,6б; подставляем б из первого уравнения (б = 7/3*п) : 0,4п + 4,8 + 0,4x = 1,4п; 4,8 + 0,4x = п; отсюда x = (п - 4,8)/0,4; Подставляем п (мы его нашли чуть выше, п = 13,2): x = (13,2 - 4,8)/0,4 = 21
250 / 4 = 62,5
62,5 * 0,016 = 1
39,868 - 1 = 38,868
38,868 / 7,9 = 4,92
12,583 + 1,417 = 14
14 - 4,92 = 9,08