наибольшее значение многочлена равно 5.
Объяснение:
- 9х² + 12х + 1
- (9х² - 12х - 1) = - ((3х)² - 2·3х·2 + 2² - 5) = -((3х - 2)² - 5) = - (3х - 2)² + 5.
Второе слагаемое 5 неизменно, поэтому наибольшего значения вся сумма достигнет тогда, когда наибольшим будет первое слагаемое - (3х - 2)².
(3х - 2)² ≥ 0 при любом действительном значении х, тогда
- (3х - 2)² ≤ 0, а значит наибольшим его значением является 0.
Получили, что в этом случае сумма будет равной 0 + 5 = 5, и это и есть наибольшее значение многочлена 1+12x-9x².
Рассмотрим функцию у = 1+12x-9x².
Она квадратичная, графиком является парабола. Так как а = - 9, а < 0, то ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы.
х вершины = -b/(2a) = -12/(-18) = 2/3.
у вершины = 1 + 12·2/3 - 9·4/9 = 1 + 8 - 4 = 5.
наибольшее значение многочлена равно 5.
Объяснение:
- 9х² + 12х + 1
- (9х² - 12х - 1) = - ((3х)² - 2·3х·2 + 2² - 5) = -((3х - 2)² - 5) = - (3х - 2)² + 5.
Второе слагаемое 5 неизменно, поэтому наибольшего значения вся сумма достигнет тогда, когда наибольшим будет первое слагаемое - (3х - 2)².
(3х - 2)² ≥ 0 при любом действительном значении х, тогда
- (3х - 2)² ≤ 0, а значит наибольшим его значением является 0.
Получили, что в этом случае сумма будет равной 0 + 5 = 5, и это и есть наибольшее значение многочлена 1+12x-9x².
Рассмотрим функцию у = 1+12x-9x².
Она квадратичная, графиком является парабола. Так как а = - 9, а < 0, то ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы.
х вершины = -b/(2a) = -12/(-18) = 2/3.
у вершины = 1 + 12·2/3 - 9·4/9 = 1 + 8 - 4 = 5.
(-1-5)/(1+5)=-6/6=-1
б) (a+1)/9+a/(a-1) если a=0,5
(0,5+1)/9+0,5/(0,5-1)=1.5/9-0,5/0,5=15/90-1=1/6-1=-5/6
в)(a+b)2-3/(a-2) если а=-3 b=5
(-3+5)²-3/(-3-2)=4-3/5=3 2/5=3,4
г)(3x-4)/(x-7)+1/2 если x=10
(3*10-4)/(10-7) +12=26/3+12=8 2/3+12=20 2/3