Решение Пусть дана окружность с центром О и в нее вписан треугольник ABC. Соединим центр окружности О с вершинами A и B треугольника, а также опустим высоту ОE на сторону AB с центра окружности. Рассмотрим треугольник OEB, OE перпендикулярна AB, то есть угол OEB – прямой, OB = R (радиусу вписанной окружности) и OE = R/2 (по условию). Тогда по теореме Пифагора имеем: BE² = OB² – OE² = R² – (1/4)*R² = (3/4)R² BE = √((3/4)R²) = R√3 / 2 Так как АО = ОВ и катет ОЕ – общий, то ΔАЕО = ΔВЕО. Отсюда следует: ЕА = R√3 / 2 Тогда АВ = ВЕ + ВЕ = R√3 / 2 + R√3 / 2 = R√3 Что и требовалось доказать
1) Решим линейное уравнение 6x+1=0 Корень уравнения: x=−1/6 теперь линейное уравнение x+3=0 Корень уравнения: x=−3 Наносим найденные точки на числовую ось и вычисляем знаки на каждом интервале. (см. приложение) ответ: x∈(−∞;−3)∪(−16;+∞) или
2) Корни уравнения 5x=0 x1=0 линейное уравнение x−12=0 Корень уравнения: x=12 Наносим найденные точки на числовую ось и вычисляем знаки на каждом интервале (см. приложение) ответ: x∈(0;12) или 0<x<12
3) линейное уравнение −x+2=0 Корень уравнения: x=2 линейное уравнение x=0 Корень линейного уравнения: x=0 Наносим найденные точки на числовую ось и вычисляем знаки на каждом интервале (см. приложение) ответ: x∈(0;2] или 0<x≤2
4) Решим линейное уравнение −2x+3=0 Корень уравнения: x=1,5 Решим линейное уравнение x−1=0 Корень уравнения: x=1 Наносим найденные точки на числовую ось и вычисляем знаки на каждом интервале (см. приложение) ответ: x∈(−∞;1)∪[1,5;+∞) или x<1;x≥1,5
Просто подставь и получится
1-3-2<0
-6<0