ответ: х = 0 .
Объяснение:
∛( 1 + x ) + ∛( 1 - x ) = 2 ; піднесемо до куба :
1 + x + 3[∛( 1 + x )]²∛( 1 - x ) + 3 ∛( 1 + x ) [∛( 1 - x )]² + 1 - x = 8 ;
2 + 3[∛( 1 + x )]²∛( 1 - x ) + 3 ∛( 1 + x ) [∛( 1 - x )]² = 8 ;
3[∛( 1 + x )]²∛( 1 - x ) + 3 ∛( 1 + x ) [∛( 1 - x )]² = 6 ;
[∛( 1 + x )]²∛( 1 - x ) + ∛( 1 + x ) [∛( 1 - x )]² = 2 ;
∛( 1 + x )∛( 1 - x )[ ∛( 1 + x ) + ∛( 1 - x ) ] = 2 ;
2
∛( 1 + x )∛( 1 - x ) * 2 = 2 ;
∛( 1 + x )∛( 1 - x ) = 1 ; піднесемо ще раз до куба
( 1 + x )( 1 - x ) = 1 ;
1 - х² = 1 ;
х² = 0 ;
х = 0 . В - дь : х = 0 .
Перевірку робити не потрібно , бо маємо радикали непарного степеня
і піднесення до непарного степеня .
5 месяцев
Объяснение:
В начале года у Вани и Дани была одинаковая сумма x руб.
Даня в нечётные месяцы прибавлял 50%, а в чётные тратил 20%.
И накопил нужную сумму за 10 месяцев.
В 1 месяц стало 1,5x руб.
Во 2 месяц стало 0,8*1,5x = 1,2x руб
В 3 месяц стало 1,5*0,8*1,5x = 0,8*1,5^2*x руб.
В 4 месяц стало 0,8*0,8*1,5^2*x = 0,8^2*1,5^2*x = (0,8*1,5)^2*x = 1,2^2*x
... И т.д.
В 10 месяц стало (0,8*1,5)^5*x = 1,2^5*x руб.
А Ваня прибавлял каждый месяц 20%.
В 1 месяц стало 1,2x руб.
Во 2 месяц стало 1,2^2*x руб.
... И т.д.
И в конце концов он тоже набрал сумму 1,2^5*x руб.
Очевидно, это произошло через 5 месяцев.
Получили верное числовое равенство, значит, уравнение имеет бесконечное число решений