Объяснение:
Линейное уравнение – уравнение, сводящееся к виду ax+b=0, где a≠0,b – числа. Линейное уравнение всегда имеет единственное решение x=−ba. Квадратное уравнение – уравнение, сводящееся к виду ax2+bx+c=0, где a≠0,b,c – числа. Выражение D=b2−4ac называется дискриминантом квадратного уравнения. Квадратное уравнение может иметь не более двух корней: ∙ если D>0, то оно имеет два различных корня и x1=−b+D2aиx2=−b−D2a ∙ если D=0, то оно имеет один корень (иногда говорят, что два совпадающих) x1=x2=−b2a ∙ если D<0, то оно не имеет корней. ▸ Теорема Виета для квадратного уравнения: Если квадратное уравнение имеет неотрицательный дискриминант, то сумма корней уравнения x1+x2=−ba а произведение x1⋅x2=ca ▸ Если квадратное уравнение: ∼ имеет два корня x1 и x2, то ax2+bx+c=a(x−x1)(x−x2). ∼ имеет один корень x1 (иногда говорят, что два совпадающих), то ax2+bx+c=a(x−x1)2. ∼ не имеет корней, то квадратный трехчлен ax2+bc+c никогда не может быть равен нулю. Более того, он при всех x строго одного знака: либо положителен, либо отрицателен. ▸ Полезные формулы сокращенного умножения: x2−y2=(x−y)(x+y)(x+y)2=x2+2xy+y2(x−y)2=x2−2xy+y2 Ознакомиться с полной теорией
Объяснение:
1. Всего 6 вероятных событий
1) 1 исход нас устраивает. P(двойки)=1/6
2) 2 благоприятных исхода. P(4 и 6) = 2/6 = 1/3
3) 2 благоприятных исхода. P(1 и 2)=2/6=1/3
4) 3 благоприятных исхода (1,3,5). P(нечетное)=3/6=1/2
2. 2 белых + 5 красных.
а) белый - всего 7 шаров, 2 исхода благоприятные P(белый)=2/7
б) красный - всего 7 шаров, 5 исходов благоприятные Р(красный)=5/7
в)зеленый - вероятность 0.
3. 3 красных + 9 синих
а)Т.к. они все не белые, то 1 или 100%
б) красный - всего 12 шаров, 3 благоприятных исхода P(красный)=3/12=1/4
в) синий - всего 12 шаров, 9 благоприятных исходов Р(синий)=9/12=3/4
перпендикуляр выведен из середины большей стороны, его основание имеет в качестве ближайшей точку на диагонали. Нам надо найти расстояние до диагонали от основания перпендикуляра
Диагональ по Пифагору равна
(45^2+60^2)^(1/2) = 75 см
Треугольники, образованные сторонами и диагональю первый и половиной большой стороны, перпендикуляром к диагонали и отрезком от вершины до перпендикуляра подобны. Коэффициент подобия равен 30 (половина большой стороны, она же гипотенуза малого треугольника) делённое на 75 (гипотенуза большого треугольника) = 2/5
Подобие есть, т.к. один угол общий, а второй угол - прямой.
малый катет малого треугольника равен коэффициент подобия, умноженный на соответствующий катет большого треугольника
d=2/5*45 = 18 cм
Пока всё было в плоскости прямоугольника.
Теперь переходим в перпендикулярную ей плоскость, в ней находится нормаль к стороне прямоугольника и перпендикуляр к диагонали из середины большей стороны
Нормаль даёт большой катет прямоугольного треугольника, перпендикуляр - малый, а расстояние от точки на нормаль до диагонали - гипотенузу, равную по условию 30
x^2 + d^2 = 30^2
x = sqrt(30^2 - 18^2) = 24