М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Укажите значение x, при котором верно неравенство 5-3x < 2x выберите один ответ: a. x = 1 b. x = -1 c. x = 3 d. x = -3

👇
Ответ:
Daniel200011
Daniel200011
15.10.2021
ответом будет a. x=1
4,5(3 оценок)
Открыть все ответы
Ответ:
tatarincevai
tatarincevai
15.10.2021
1.
4х(х + 3) =  4 - 3х
4х² + 12х =  4 - 3х
4х² + 12х  - 4 + 3х = 0
4х² + 15х  - 4  = 0
a=4 ; b = 15 ; с = - 4
D = b²  - 4ac  = 15² - 4*4*(-4) = 225 + 64 = 289 = 17²
D>0  -  два корня уравнения
х₁ = ( - b - √D)/2a  = (-15 - 17)/(2*4) = -32/8 = - 4
x₂  = (- b  +√D)/2a = (-15+17)/(2*4) = 2/8 = 1/4  = 0.25

2.
3x < 5(x+1) - 10<8
3x < 5x + 5 - 10 <8
3x < 5x  - 5 < 8 
{ 5x - 5 > 3x
{ 5x - 5 <  8

{ 5x - 3x  > 5 
{ 5x  < 8 + 5

{ 2x > 5
{ 5x < 13

{ x > 5/2
{ x < 13/5

{ x > 2.5
{ x < 2.6
2.5< x < 2.6
x∈ (2.5 ; 2,6)

4.
4√2 = √32
√33
6 = √36
4√2 < √33 <  6 
ответ : 4√2

5.
\frac{b+4}{b^{2}+16} * ( \frac{b+4}{b-4} + \frac{b-4}{b+4} )= \frac{b+4}{b^{2}+16} * \frac{(b+4)(b+4)+(b - 4)(b - 4)}{(b-4)(b+4)} = \\ \\ =\frac{b+4}{b^{2}+16} * \frac{(b + 4)^2 + (b - 4)^2}{(b-4)(b+4)} = \frac{b+4}{b^{2}+16} * \frac{b^2+8b +16 + b^2 -8b+16}{(b - 4)(b+4)} = \\ \\ =\frac{b+4}{b^{2}+16} * \frac{2b^2+2*16}{(b-4)(b+4)} = \frac{(b+4) * 2 *(b^2+16)}{(b^2+16)*(b-4)(b+4)} = \frac{2}{b - 4} \\ \\ \\ b= 3.75 \\ \frac{2}{3.75 - 4} = \frac{2}{-0.25} = -8
4,4(33 оценок)
Ответ:
Danfdffefd
Danfdffefd
15.10.2021
Исходное неравенство распадается на совокупность систем:

\left[\begin{array}{l} \left\{\begin{array}{l} x < 3 \ , \\ 1 \leq 3-x \leq 5 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 3 \ , \\ 1 \leq x-3 \leq 5 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 3 \ , \\ -5 \leq x-3 \leq -1 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 3 \ , \\ 1+3 \leq x \leq 5+3 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 3 \ , \\ -2 \leq x \leq 2 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 3 \ , \\ 4 \leq x \leq 8 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} x \in [ -2 ; 2 ] \ , \\ x \in [ 4 ; 8 ] \ ; \end{array}\right

x \in [ -2 ; 2 ] \cup [ 4 ; 8 ] \ ;

а) неравенство эквивалентно:

-2 \leq x \leq 2 \ ;

x \in [ -2 ; 2 ] \ ;

Отрезок данного решения полностью совпадает с одним из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет 1/2 .

о т в е т :    \frac{1}{2} = 0.5 = 50 \% \ ;

б) неравенство эквивалентно:

-2 \leq x-6 \leq 2 \ ;

6-2 \leq x \leq 2+6 \ ;

x \in [ 4 ; 8 ] \ ;

Отрезок данного решения полностью совпадает с одним из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет 1/2 .

о т в е т :    \frac{1}{2} = 0.5 = 50 \% \ ;

в) неравенство эквивалентно:

-1 \leq x \leq 1 \ ;

x \in [ -1 ; 1 ] \ ;

Отрезок данного решения составляет половину от одного из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет    \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} = 0.25 = 25 \% \ ;

о т в е т :    \frac{1}{4} = 0.25 = 25 \% \ ;

г) неравенство распадается на совокупность систем:

\left[\begin{array}{l} \left\{\begin{array}{l} x < 6 \ , \\ 1 \leq 6-x \leq 2 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 6 \ , \\ 1 \leq x-6 \leq 2 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 6 \ , \\ -2 \leq x-6 \leq -1 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 6 \ , \\ 1+6 \leq x \leq 2+6 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 6 \ , \\ 4 \leq x \leq 5 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 6 \ , \\ 7 \leq x \leq 8 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} x \in [ 4 ; 5 ] \ , \\ x \in [ 7 ; 8 ] \ ; \end{array}\right

x \in [ 4 ; 5 ] \cup [ 7 ; 8 ] \ ;

Каждый из двух отрезков данного решения составляет четверть от одного из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет    \frac{1}{4} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8} + \frac{1}{8} = \frac{1}{4} = 0.25 = 25 \% \ ;

о т в е т :    \frac{1}{4} = 0.25 = 25 \% \ ;
4,4(14 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ