Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными, где a, b и c — некоторые числа ( a ≠ 0 , b ≠ 0 ), а х и у — переменные.
Для начала определим точку пересечения прямых. Для этого приравняем оба уравнения:
-7/8х + 17 = -3/5 х - 16 -7/8х + 3/5х = -16 - 17 7/8х - 3/5х = 16+17 11/40 х = 33 х = 33 : 11/40 = 33 * 40/11 х = 120 Чтобы найти у подставляем х в любое из этих уравнений. Я выбрала второе. у = - 3/5 * 120 - 16 = -72-16 = -88 Точка пересечения: (120; -88) Если график уравнения проходит через эту точку, то подставив ее координаты мы должны получить верное выражение: у+рх =0 -88+120р=0 120р = -88 р = -88/120 р = -11/15 ответ: -11/15
с двумя переменными, где a, b и c — некоторые числа ( a ≠ 0 , b ≠ 0 ),
а х и у — переменные.