Запишите многочлен 4- ой степени, корнями которого являются числа :
если число а-корень уравнения то х-а=0
воспользовавшись этим свойством составим уравнения
1) - 2,0,2,3
(x+2)(x-0)(x-2)(x-3)=0
x(x-2)(x+2)(x-3)=0
x(x²-4)(x-3)=0
(x²-4)(x²-3x)=0
перемножим скобки
x⁴-4x²-3x³+12x=0
приведем к стандартному виду
x⁴-3x³-4x²+12x=0
2) - 3,-1,1,3
(x+3)(x+1)(x-1)(x-3)=0
(x²-9)(x²-1)=0
x⁴-9x²-x²+9=0
x⁴-10x²+9=0
3) - 3,-1,0,3
(x+3)(x+1)(x-0)(x-3)=0
(x²-9)*x*(x+1)=0
(x²-9)(x²+x)=0
x⁴-9x²+x³-9x=0
x⁴+x³-9x²-9x=0
4) -2,1,2,5
(x+2)(x-1)(x-2)(x-5)=0
(x²-4)(x-1)(x-5)=0
(x²-4)(x²-6x+5)=0
x⁴-4x²-6x³+24x+5x²-20=0
x⁴-6x³+x²+24x-20=0
1.Угловой коэффициент данной прямой к=1, угловой коэффициент искомой касательной равен f'(x₀), где х₀-абсцисса точки касания. Т.к. искомая касательная и данная прямая параллельны, то их угловые коэффициенты равны. f'(x₀)=1;
2. f'(x)=2х-3; Тогда 2х₀ - 3=1, откуда х₀=4/2=2; Итак, на графике функции существует точка с абсциссой х₀=2 , касательная в которой параллельна данной прямой.
При х₀=2 имеем f(x₀)=2²- 3*2+2=4-6+2=0; .
Общий вид уравнения касательной, проходящей через точку с абсциссой х₀, такой у=f(x₀)+f'(x₀)(x-x₀); Подставим все необходимое в формулу, получим
у=0+1*(х-2); у=х-2 -искомое уравнение касательной.
ответ у=х-2
0
1
2
3
4
-1
-2
-4