Перемножим 25 a^4 + 50 a^3 x + 35 a^2 x^2 + 10 a x^3 + x^4 попробуем выделить полный квадрат в него явно входит 5a^2 и x^2 Но при наличии только этих двух слагаемых результирующий многочлен не имел бы а и х в третьей степени. Значит, есть ещё что-то. Обозначим это нечто как z (5a^2 +z+ x^2 )^2-(25 a^4 + 50 a^3 x + 35 a^2 x^2 + 10 a x^3 + x^4)= z^2 + 2 x^2 z + 10 a^2 z - 50 a^3 x - 25 a^2 x^2 - 10 a x^3 =0 Решим это квадратное уравнение относительно z корня два z = 5 a x и второй z = -10 a^2 - 5 a x - 2 x^2 второй не интересен :) ответ (5 a^2 + 5 a x + x^2)^2 - квадрат исходного выражения
Сумма: (a+b)+(a+c)+(c+b)=2*(a+b+c) четна,значит либо одно ,либо все 3 из них четно.Положим что все 3 четны,тогда: (a+b)*(b+c)*(a+c)=340 делиться на 8. Но 340 не делиться на 8,значит возможно ,что четно лишь одно из выражений. 340=2*2*5*17. (на простые множители)Поэтому тк только одно из слагаемых четно,то оно делиться на 4. Также раз a,b,c натуральный,то (a+b)>1,к ак и остальные два множителя.Тонда из всех этих условий очевидно что,можно взять произвольно в силу симметрии задачи, что (a+b)=4,(a+c)=5,b+c=17 Явно что a не равно b ,Тк (b+c) не равно (a+c). Тогда a=1 b=3,тогда c=5-1=4 ,но тогда c+b=7 не равно 17.Вывод такое невозможно