а) разность чисел 8,5 и 7,3;
б) произведение чисел 4,7 и 12,3;
в) частное чисел 65 и 1,3;
г) сумма чисел 5,6 и 0,9;
д) сумма произведения чисел 2 и 9,5 и числа 14;
е) частное разности чисел 10 и 2,7 и числа 5;
ж) произведение числа 6,1 и частного чисел 8,4 и 4;
з) частное суммы чисел 6,4 и 7 и числа 2;
и) разность числа 2,5 и суммы чисел 3,2 и 1,8;
к) произведение разности чисел 5,74 и 1,24 и числа 3,6;
л) разность числа 8 и суммы чисел 1,71 и 0,19;
м) разность частного чисел 0,36 и 0,3 и числа 1,78
f'(x) = cosx - 1
f'(x) ≥ 0
cosx - 1 ≥ 0
cosx ≥ 1
Неравенство обращается в равенство, т.к. cosx ∈ [-1; 1].
Отсюда делаем вывод, что функция убывает на всей своей области определения.
ответ: убывает на R.
2) f(x) = √(x² - 1)
u = x² - 1, v = √u
f'(x) = u'·v' = (x² - 1)'·(√u)' = 2x·1/2√u = x/√(x² - 1)
f'(x) ≥ 0
x/[√x² - 1) ≥ 0
Знаменатель всегда больше нуля, т.к. подкоренное выражение - число неотрицательное.
Найдём D(y):
x² - 1 ≥ 0
x ∈ (-∞; -1] U [1; +∞).
Решаем далее неравенство:
x ≥ 0.
С учётом области определения получаем, что при x ∈ [1; +∞) функция будет возрастать (т.к. неравенство будет выполняться), а на (-∞; 1] функция будет убывать (т.к. неравенство не будет выполняться).
ответ: убывает на (-∞; -1], возрастает на [1; +∞).