Пусть центр окружности имеет координаты О(х;0) .
Точки принадлежащие окружности имеют координаты (8;0) и (0;4). Их координаты удовлетворяют уравнению окружности:
(x –х₀)²+ (y – у₀)² = R² , где (х₀;у₀)-координаты центра .
(8-х)²+(0-0)²=R² , или 64-16х+х²=R²
(0-х)²+(4-0)²=R² или х²+16=R² . Вычтем из 1 уравнения 2. Получим :
64-16х-16=0
-16х=-48
х=3. Центр имеет координаты О(3;0).
Найдем R=√( (3-0)²+(0-4)² )=5.
(x− 3)²+y²=5²
Объяснение:
В решении.
Объяснение:
Моторная лодка против течения реки 308 км и вернулась в пункт отправления , затратив на обратный путь на 3 часа меньше , чем на путь против течения.
Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 3 км/ч .
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость лодки в неподвижной воде.
х + 3 - скорость лодки по течению.
х - 3 - скорость лодки против течения.
308/(х + 3) - время лодки по течению.
308/(х - 3) - время лодки против течения.
Разница во времени 3 часа, уравнение:
308/(х - 3) - 308/(х + 3) = 3
Умножить все части уравнения на (х - 3)(х + 3), чтобы избавиться от дробного выражения:
308*(х + 3) - 308*(х - 3) = 3(х - 3)(х + 3)
308х + 924 - 308х + 924 = 3х² - 27
1848 = 3х² - 27
-3х² = -27 - 1848
-3х² = -1875
х² = -1875/-3
х² = 625
х = √625
х = 25 (км/час) - скорость лодки в неподвижной воде.
Проверка:
308 : 22 = 14 (часов);
308 : 28 = 11 (часов);
14 - 11 = 3 (часа), верно.
Разделим на 6:
(x⁵y⁴ + x⁵z⁴ + y⁵x⁴ + y⁵z⁴ + z⁵x⁴ + z⁵y⁴)/6 ≥ x³y³z³
Заметим, что перемножив все слагаемые, получим:
x⁵y⁴·x⁵z⁴·y⁵x⁴·y⁵z⁴·z⁵x⁴·z⁵y⁴ = x¹⁸y¹⁸z¹⁸
Количество слагаемых - 6.
Значит, в правой части представлено среднее арифметическое шести чисел, а в правой части - среднее геометрическое.
Как известно, среднее арифметическое n-ого количества чисел больше n-ого количества среднего геометрического этих же чисел (или равно, если все n чисел равны между собой).