Фигура представляет собой сегмент параболы y=1-x², ограниченный сверху самой параболой, снизу - осью абсцисс, слева - прямой x=-1 и справа - прямой x=1. Так как фигура симметрична относительно оси ординат, то её площадь S=2*S1, где S1 - площадь фигуры, ограниченной сверху данной параболой, слева - осью ординат, справа - прямой x=1 и снизу - осью абсцисс. Но S1=∫(1-x²)*dx с пределами интегрирования x1=0 и x2=1. Так как F(x)=∫(1-x²)*dx=x-x³/3+C, то S1=F(1)-F(0)=2/3. Тогда S=2*2/3=4/3. ответ: 4/3.
Вариант 1. Они встретились, когда еще 1 часа не с момента старта. После встречи они разъехались и к моменту 1 час расстояние было 3 км, а к моменту 2 часа 14 км. Значит, они за 1 час в сумме 14 - 3 = 11 км. При этом они за первый час расстояние АВ и еще 3 км. Значит, АВ = 8 км. Второй вариант. За первый час они еще не встретились. Расстояние было 3 км. За второй час они встретились и разошлись дальше на 14 км. Значит, за 1 час они в сумм км. Но за первый час они не дошли друг до друга 3 км. Расстояние АВ = 17 + 3 = 20 км.
V=(40-X)(64-X)X - функция. найти максимум, х∈(0, 40). найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х она равна 3х²-208х+2560 найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0 1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3= =(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3= =(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16 ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)