Объяснение:
4х⁴+х²-3=0
сделаем замену переменных
х²=y тогда х⁴=у²
получим уравнение
4y²+y-3=0
Найдем дискриминант квадратного уравнения:
D = b² - 4ac = 1² - 4·4·(-3) = 1 + 48 = 49
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
y₁ = (-1 - √49)/ 2·4 = ( -1 - 7)/ 8 = -8 /8 = -1
y₂ = (-1 + √49)/ 2·4 = ( -1 + 7)/ 8 = 6/ 8 = 0.75
1) y=-1 x²=-1 x=±√-1 x=±i это комплексные корни
х₁=√-1=i
x²=-√-1=-i
2) y=0.75=3/4
x²=3/4
x=±√(3/4)=±(√3)/2 это действительные корни
x₃= (√3)/2
x₄= -(√3)/2
Произведение равно нулю, если хотя бы один из множителей равен нулю
ОТВЕТ: 0;5.
По т. Виета:
ОТВЕТ: -6 ; 3 .