Положим что утверждение 1 неверное,тогда тк последняя цифра записи,цифра 1,то у числа A-8 последняя цифра 3,но квадрат натурального числа не может кончаться цифрой 3,тк всевозможные квадраты последних цифр: 1,4,9,16,25,36,49,64,81: есть они могут кончаться только на цифры 1 4 9 6 5 Тогда 1 утверждение верное.Положим что неверно 3 утверждение,тогда последняя цифра числа A+7 цифра 8,но такое невозможно тк квадраты кончаются на цифры 1,4,6,9,5. Тогда утверждение 2 неверно,а утверждения 1 и 3 верные. Тогда пусть a^2=A+7 b^2=A-8 a,b-натуральные числа,тогда a^2-b^2=15 (a-b)(a+b)=15 ,тогда множители натуральные и возможно 2 варианта 1) a-b=3 a+b=5 2a=8 a=4 A=4^2-7=9 2) a-b=1 a+b=15 2a=16 a=8 A=8^2-7=57 То есть возможно 2 варианта A=9 или A=57
23.17 p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1 То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2 Разберем по частям 2*x^2*y^2+2 1) 2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен 2) число 2>0, положительное число 3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число