М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
haydarakyol1986
haydarakyol1986
03.03.2021 02:30 •  Алгебра

Найдите значения x, при которых трехчлен -3x^2+4x-1 принимает положительные значения

👇
Ответ:
опалссио
опалссио
03.03.2021
Для этого нужно решить неравенство -3*x²+4*x-1>0, или 3*x²-4*x+1<0. Решая уравнение 3*x²-4*x+1=0, находим его корни x1=1 и x2=1/3. Если x<1/3, то 3*x²-4*x+1>0, если 1/3<x<1, то 3*x²-4*x+1<0, если x>1, то 3*x²-4*x+1>0. Значит, решением неравенства является интервал (1/3;1). ответ: (1/3;1).
4,6(81 оценок)
Открыть все ответы
Ответ:
viktoria123987650
viktoria123987650
03.03.2021

Задания на свойства и графики квадратичной функции вызывают, как показывает практика, серьезные затруднения. Это довольно странно, ибо квадратичную функцию проходят в 8 классе, а потом всю первую четверть 9-го класса "вымучивают" свойства параболы и строят ее графики для различных параметров.

            Это связано с тем, что заставляя учащихся строить параболы, практически не уделяют времени на "чтение" графиков, то есть не практикуют осмысление информации, полученной с картинки. Видимо, предполагается, что, построив десятка два графиков, сообразительный школьник сам обнаружит и сформулирует связь коэффициентов в формуле и внешний вид графика. На практике так не получается. Для подобного обобщения необходим серьезный опыт математических мини исследований, которым большинство девятиклассников, конечно, не обладает. А между тем, в ГИА предлагают именно по графику определить знаки коэффициентов.

            Не будем требовать от школьников невозможного и предложим один из алгоритмов решения подобных задач.

            Итак, функция вида y = ax2 + bx + c называется квадратичной, графиком ее является парабола. Как следует из названия, главным слагаемым является ax2. То есть а не должно равняться нулю, остальные коэффициенты (b и с) нулю равняться могут.

            Посмотрим, как влияют на внешний вид параболы знаки ее коэффициентов.

            Самая зависимость для коэффициента а. Большинство школьников уверенно отвечает: " если а > 0, то ветви параболы направлены вверх, а если а < 0, – то вниз". Совершенно верно. Ниже приведен график квадратичной функции, у которой а > 0.

y = 0,5x2 - 3x + 1

В данном случае а = 0,5

А теперь для а < 0:

 

4,7(44 оценок)
Ответ:
ALEXDEMI777
ALEXDEMI777
03.03.2021

Задания на свойства и графики квадратичной функции вызывают, как показывает практика, серьезные затруднения. Это довольно странно, ибо квадратичную функцию проходят в 8 классе, а потом всю первую четверть 9-го класса "вымучивают" свойства параболы и строят ее графики для различных параметров.

            Это связано с тем, что заставляя учащихся строить параболы, практически не уделяют времени на "чтение" графиков, то есть не практикуют осмысление информации, полученной с картинки. Видимо, предполагается, что, построив десятка два графиков, сообразительный школьник сам обнаружит и сформулирует связь коэффициентов в формуле и внешний вид графика. На практике так не получается. Для подобного обобщения необходим серьезный опыт математических мини исследований, которым большинство девятиклассников, конечно, не обладает. А между тем, в ГИА предлагают именно по графику определить знаки коэффициентов.

            Не будем требовать от школьников невозможного и предложим один из алгоритмов решения подобных задач.

            Итак, функция вида y = ax2 + bx + c называется квадратичной, графиком ее является парабола. Как следует из названия, главным слагаемым является ax2. То есть а не должно равняться нулю, остальные коэффициенты (b и с) нулю равняться могут.

            Посмотрим, как влияют на внешний вид параболы знаки ее коэффициентов.

            Самая зависимость для коэффициента а. Большинство школьников уверенно отвечает: " если а > 0, то ветви параболы направлены вверх, а если а < 0, – то вниз". Совершенно верно. Ниже приведен график квадратичной функции, у которой а > 0.

y = 0,5x2 - 3x + 1

В данном случае а = 0,5

А теперь для а < 0:

 

4,6(59 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ