ответ: 20 км/час.
Объяснение:
Велосипедист выехал с некоторой скоростью из пункта А в пункт В, расстояние между которыми 60 км Прибыв в пункт в, он повернул назад и ехал с той же скоростью, а через час сделал на 20 мин. После этого велосипедист увеличил скоростью на 4 км/ч. Найдите начальную скорость велосипедиста, если расстояние от В до А он проехал за то же время, что и от А до В.
Решение.
Пусть х км/час - начальная скорость велосипедиста. Тогда
путь от А до В он проехал за t1=60/x часов.
На обратном пути он проехал за 1 час х км, 20 минут(1/3 часа) отдыхал и оставшийся путь проехал со скоростью x+4 км/час за время (60-x)/(x+4) часа. Таким образом на обратный путь он затратил t2=1+1/3+ (60-x)/(x+4) часа.
По условию t1=t2. Тогда
60/x= 4/3+ (60-x)/(x+4);
3*60(x+4)=4*x(x+4)+3*x(60-x);
180x+720=4x²+16x+180x-3x²;
x²+16x-720=0;
По т. Виета
x1+x2=-16; x1*x2=-720;
x1=20; x2=-36 - не соответствует условию.
x=20 км/час - первоначальная скорость велосипедиста.
16 человек приняло участие
Объяснение:
Рассуждаем так
пронумеруем игроков
1, 2, 3, 4, 5, 6, ..., n
тогда первый игрок будет играть с (n-1) человеком
второй так же и всего игроков n
Значит количество партий n(n-1) НО!
нужно Учесть что к примеру 1 игрок играет с 5 и мы посчитали эту партию в играх первого игрока, но 5 так же играет с первым и ему мы тоже эту игру посчитали. Значит одну и туже партию посчитали ДВАЖДЫ. И таких повторяющихся партий у каждого игрока
Значит общее количество партий необходимо разделить на 2
Итого количество n(n-1) /2
составим уравнение
n(n – 1) : 2 = 120
n²— n =240
n² - n – 240 = 0
D = 1+960 = 961 = 31²
n1.2 = (1 ± 31) : 2
п1 = 16; n2 = -15
отрицательным количество игроков быть не может
Значит ответ 16 человек приняло участие в турнире
x² -4x+13 =0,25x²+2х+4
0.75х² -6х+9=0 для упрощения почленно домножим на 4/3
х²-8х+12=0
D=64-48=16 √D=4
x₁=(8+4)/2=6
x₂=(8-4)/2=2