Любое выражение в квадрате принимает наименьшее значение 0. Сумма квадратов тоже принимает наименьшее значение 0.
Следовательно, наименьшее значение выражения 0. Чтобы выражение было равно 0, нужно, чтобы либо первое слагаемое было х, а второе -х; либо первое слагаемое -х, а второе х; либо оба слагаемых должны быть равны 0. Так как здесь сумма квадратов, то ни одно из слагаемых отрицательным быть не может => Оба слагаемых равны 0.
5х+4у+6=0 3х+4у+2=0
Выражаем 4у из обоих уравнений:
4у=-6-5х 4у=-2-3х
Приравниваем -6-5х=-2-3х
-2х=4
х=-2
Подставляем х в одно из уравнений:
4у=-2-3*(-2)
4у=4
у=1
сумма которых равна 360°.
Так как сумма трех углов из этих четырех равна 236°, то четвертый угол:
∠4 = 360 - (∠1 + ∠2 + ∠3) = 360 - 236 = 124°.
Угол ∠2, вертикальный с углом ∠4, равен ему по величине:
∠2 = ∠4 = 124°
Оставшаяся пара вертикальных углов:
∠1 = ∠3 = (360 - (∠2 + ∠4)) : 2 = (360 - 248) : 2 = 112 : 2 = 56°
ответ: 56°; 56°; 124°
2) См.рис.
Так как ∠DOC = 27°, то ∠AOD = ∠AOC - ∠DOC = 90 - 27 = 63°
∠AOB = ∠AOD + ∠DOB = 63 + 90 = 153°
ответ: 153°