Имеем:f(x)=2x^4-x+1; f'(x)=(2x^4-x+1)'=8x^3-1
Из уравнения f'(x)=0, или 8x^3-1=0, находим стационарные точки функции f(x):
8x^3=1
x^3=1/8
x=1/2=0.5
В данном случае одна стационарная точка.
В интервал [-1, 1] попадает эта точка 1/2. В ней функция принимает значение f(1/2)=f(0.5)=2*(0.5)^4-0.5+1=5/8=0.625.
В крайних точках интервала [-1,1] имеем: f(-1) = 2*(-1)^4-(-1)+1=4; f(1)=2*1^4-1+1=2.
Из трех значений f(1/2)=f(0.5)=0.625, f(-1) =4, f(1) =2 наименьшим является 0.625, а наибольшим 4.
Поэтому минимальное значение функции f(x)=2x^4-x+1в интервале [-1,1] равно 0.625, максимальное 4.
) 13 + 28х = 5х + 17 + 23х
28х - 5х - 23х = 17 - 13
28х - 28х = 4
0х = 4 - уравнение не имеет корней, так как при любом значении х, 0х = 0
2) 5 - 3х + 4 = 17х + 9 - 20х
- 3х - 17х + 20х = 9 - 5 - 4
- 20х + 20х = 9 - 9
0х = 0
х - любое число (от минус бесконечности до плюс бесконечности)
3) 3/4у + 2у + 5 = 2 3/4у + 4,1 + 0,9
3/4у + 2у - 2 3/4у = 4,1 + 0,9 - 5
2 3/4у - 2 3/4у = 5 - 5
0у = 0
у - любое число (от минус бесконечности до плюс бесконечности)
4) 9 - 16у = 20 - 31у+ 15у
- 16у + 31у - 15у = 20 - 9
0у = 11 - уравнение не имеет корней, так как при любом значении у, 0у = 0
ответ: 1); 4) - не имеют корней; 2); 3) - бесконечное множество корней.
Объяснение:
Вот это правильно