М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nikitatutaev03
nikitatutaev03
27.09.2022 17:00 •  Алгебра

Решить рациональное уравнение: а) x-5/x+1=0 б)3+2x/x-1=2 в)(3x-1)(x+2)/2x^2+5x+2=0

👇
Открыть все ответы
Ответ:

1. Найти наибольшее и наименьшее значение функции

F(x)=\dfrac{x^2-7x}{x-9}   на промежутке [-4; 1]

Точка разрыва  x=9   в заданный интервал не входит.

F(x)=\dfrac{x^2-7x}{x-9}=x+2+\dfrac{18}{x-9}

Первая производная для нахождения точек экстремумов.

F'(x)=\Big(x+2+\dfrac{18}{x-9}\Big)'=1-\dfrac{18}{(x-9)^2}\\\\F'(x)=1-\dfrac{18}{(x-9)^2}=0\\\\ \dfrac{x^2-18x+81-18}{(x-9)^2}=0~~~\Leftrightarrow~~~\dfrac{x^2-18x+63}{(x-9)^2}=0\\\\ x^2-18x+63=0\\\\ \dfrac{D}4=9^2-63=18=(3\sqrt2)^2\\\\x_1=9+3\sqrt2\approx 13;~~~x_2=9-3\sqrt2\approx 4,75

Обе точки экстремумов не попадают в интервал  x∈[-4; 1]

Значения функции на концах интервала

F(-4)=\dfrac{(-4)^2-7(-4)}{-4-9}=\dfrac{16+28}{-13}=-3\dfrac{5}{13}\\\\F(1)=\dfrac{1^2-7\cdot1}{1-9}=\dfrac{-6}{-8}=0,75

ответ: наименьшее значение функции \boldsymbol{F(-4)=-3\dfrac{5}{13}};

           наибольшее значение функции F(1) = 0,75

-----------------------------------------------------------------------------

2. Записать уравнение касательной к графику

функции   F(x)=x⁴-2x   в точке  x₀=-1

Уравнение касательной имеет вид  y = F(x₀) + F’(x₀)·(x - x₀)

F(-1) = x⁴-2x = (-1)⁴ - 2(-1) = 1+2 = 3

F'(-1) = (x⁴-2x)' = 4x³ - 2 = 4(-1)³ - 2 = -6

y = F(x₀) + F’(x₀)·(x - x₀) = 3 - 6 (x + 1) = 3 - 6x -6 = -6x - 3

ответ:  уравнение касательной   y = -6x - 3

---------------------------------------------------------------------------

3. Исследовать функцию и построить ее график  F(x)=x³-3x²

1) Область определения  D(F) = R

2) Область значений  E(F) = R

3) Нули функции

   F(x)=x³-3x² = 0;      x²(x - 3) = 0;     x₁ = 0;  x₂ = 3

4) Пересечение с осью OY

  x = 0;   F(0) = 0³-3·0² = 0

5) Экстремумы функции

  F'(x) = 0;   (x³-3x²)' = 0;   3x² - 6x = 0;  3x(x - 2) = 0;

  x₁ = 0;  F(0) = 0;   F"(0) = 6x - 6 = -6   ⇒  локальный максимум.

  x₂ = 2;  F(2) = 2³-3·2² = -4;  F"(2) = 6x - 6 = 6  ⇒  локальный минимум.

6) Монотонность функции.

   Интервалы знакопостоянства первой

              производной F'(x) = 3x(x - 2)

   ++++++++ (0) ------------- (2) +++++++++> x

         /                    \                    /

  x ∈ (-∞; 0)∪(2; +∞)  -  функция возрастает

  x ∈ (0;2)  -  функция убывает

7) Функция не периодическая, общего вида (не является чётной, не является нечётной).

8) Дополнительные точки для построения

x₃ = -1;  y₃ = -4;  x₄ = 1;  y₄ = -2

9) График функции в приложении


1. знайти найбільше і ! 1. знайти найбільше і найменше значення функції f(x)= x^2-7x/x-9 на проміжку
4,5(30 оценок)
Ответ:
vanchugovp02hjd
vanchugovp02hjd
27.09.2022
2) х-sinx
-x-sin(-x)=-x+sinx=-(x-sinx)
нечетная
3) x^2-cosx
(-х)²-сos(-x)=x²-cosx
четная
4) x^3+sinx
(-x)³+sin(-x)=-x³-sinx=-(x³+sinx)
нечетная
5) 1-cosx/1+cosx
(1-сos(-x))/(1+cos(-x))=(1-cosx)/(1+cosx)
четная
6) tgx+1/tgx-1
tg(-x)+1)/(tg(-x)-1)=(-tgx+1)/(-tgx-1)=[-(tgx-1)]/[-(tgx+1)]=(tgx-1)/(tgx+1)
ни четная,ни нечетная
7) x+sinx/x-sinx
(-x+sin(-x))/(-x-sin(-x))=(-x-sinx)/(-x+sinx)=[-(x+sinx)]/[-(x-sinx)]=
=(x+sinx)/(x-sinx)
четная
8) x^2-sin^2x/1+sin^2x
[(-x)²-sin²(-x)]/[1+sin²(-x)]=(x²-sin²x)/(1+sin²x)
четная
4,6(97 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ