Каждая сторона вписанного треугольника соединяет середины сторон исходного и поэтому является средней линией. Средняя линия треугольника равна половине длины стороны, которой она параллельна.
Коэффициент k подобия этих треугольников ½
.Отсюда каждая сторона первого вписанного треугольника равна 8·½ =4 см
.Пусть периметр исходного треугольника будет Р₁,
периметр первого вписанного треугольника- р₂
Тогда Р₁=8·24 см
р₂=24·½ =12 cм
Отношение периметров подобных треугольников равно коэффициенту их подобия.
р₃=12·½=6 см
р₄=6·½=3 см
р₅=3·½=1,5 см
р₆=1,5·½=0,75 см
р₇=0,75·½=0,375 см
р₈=0,375·½=0,1875 см
Как Вы, наверное, обратили внимание, последовательность периметров сторон вписанных треугольников - геометрическая прогрессия, где каждый член, начиная со второго, равен предыдущему, умноженному на одно и то же число ½.
Каждый член геометрической прогрессии {bn} определяется формулой
bn = b₁ · qⁿ⁻¹
b₈=24·(½)⁷=0,1875 см
Центральный угол правильного многоугольника - это угол между двумя лучами, проведенными из центра многоугольника к двум его соседним вершинам. Центр правильного многоугольника совпадает с центром описанной окружности, значит, центральный угол, образованный двумя радиусами, проведенными к двум соседним вершинам, равен центральному углу многоугольника.
У правильного n-угольника n равных сторон, значит, будет n равных центральных углов.
Для двенадцатиугольника
360° : 12 = 30°
Внешний угол правильного многоугольника равен центральному углу.