М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
MmVl
MmVl
22.04.2023 03:38 •  Алгебра

Подскажите, как решаются уравнения на умножение и деление чисел со степенями, если и основания и степени разные ( пример

👇
Ответ:
Inna2404
Inna2404
22.04.2023
Ну основание ты умножать, а степени складывашь.
Тип 2 в3× 4в5= 8в8
4,5(36 оценок)
Открыть все ответы
Ответ:
Ilya333444
Ilya333444
22.04.2023

1. Формула которая была применена это, формула отрицательной степени дроби.

( \frac{a}{b} ) {}^{ - n } = ( \frac{b}{a} ) {}^{n}т.е эта формула говорит что дробь с отрицательной степенью "-n", равен дроби обратной с положительной степенью "n". Или своими словами дробь перевернули и степень лишилась минуса..

2. первую дробь переписали, дроби умножаются.

А на вторую дробь применили одно из свойств степени:

( \frac{a}{b} ) {}^{n} =\frac{a {}^{n} }{b {}^{n} }

И в данном случае "а - числитель" это выражение поэтому степень распределяется на каждый член этого выражения: (a^(-2)×b^(3))³

И выполняется ещё одно свойство степени:

(a {}^{m} ) {}^{n} = a {}^{m \times n}

и тоже распределяется на каждый член выражения:

a^(-2×3)×b^(3×3)=a^(-6)×b^(9).

С числителем разобрались, переходим к знаменателю: 3, его также возводим в степень "3" по первому свойству которую я вам написал.

3. Чтобы умножить дробь на дробь, нужно: 1. Числитель первой дроби умножить на числитель второй дроби, и результат записать в числитель новой дроби. 2. Знаменатель первой дроби умножить на знаменатель второй дроби, и результат записать в знаменатель той же самой новой дроби. т.е:

\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}

4. В числителе 9, и в знаменателе 27 успешно сокращаются на 9.

т.е и 9, и 27 делятся на 9.

в числителе остаётся. a^(-6)×b^(9).

В знаменателе "3" которая осталась от 27 после сокращения, умножается на 2, потому что от перемен мест множителей, произведение не меняется. получаем 6×a^(-3)×b(5).

5. Степени у оснований делителей сокращаются.

по свойству степени:

a {}^{m} \div a {}^{n} = a {}^{m - n}

a^(-6)÷a^(-3)=a^(-6-(-3))=a^(-6+3)=a^(-3). (числитель)

b^(9)÷b^(4)=b^(9-4)=b^5; также у нас в знаменателе была "6". Поэтому знаменатель принимает такой вид: 6×b^(5)

дробь преобразовалась в такую:

\frac{1}{6} \times \frac{{a}^{ - 3}}{b {}^{5} }

т.е a^(-3) делится на 6b^(5).

Чтобы поделить что-то на дробь, нужно: это "что-то" умножить на дробь обратную данной. т.е:

\frac{1}{6} \times a {}^{ - 3} \div \frac{1}{b {}^{5} } = \frac{1}{6} \times \frac{1}{ {a}^{3} } \times b {}^{5} = \frac{b {}^{5} }{6a {}^{3} }

4,7(51 оценок)
Ответ:
Mariyam005
Mariyam005
22.04.2023

Система линейных уравнений с двумя неизвестными

x + y = 5

2x - 3y = 1

Система линейных ур-ний с тремя неизвестными

2*x = 2

5*y = 10

x + y + z = 3

Система дробно-рациональных уравнений

x + y = 3

1/x + 1/y = 2/5

Система четырёх уравнений

x1 + 2x2 + 3x3 - 2x4 = 1

2x1 - x2 - 2x3 - 3x4 = 2

3x1 + 2x2 - x3 + 2x4 = -5

2x1 - 3x2 + 2x3 + x4 = 11

Система линейных уравнений с четырьмя неизвестными

2x + 4y + 6z + 8v = 100

3x + 5y + 7z + 9v = 116

3x - 5y + 7z - 9v = -40

-2x + 4y - 6z + 8v = 36

Система трёх нелинейных ур-ний, содержащая квадрат и дробь

2/x = 11

x - 3*z^2 = 0

2/7*x + y - z = -3

Система двух ур-ний, содержащая куб (3-ю степень)

x = y^3

x*y = -5

Система ур-ний c квадратным корнем

x + y - sqrt(x*y) = 5

2*x*y = 3

Система тригонометрических ур-ний

x + y = 5*pi/2

sin(x) + cos(2y) = -1

Система показательных и логарифмических уравнений

y - log(x)/log(3) = 1

x^y = 3^12

Объяснение:

4,8(47 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ