Объяснение:
Натуральные числа
Понятие натурального числа, вызванное потребностью счёта предметов, возникло ещё в доисторические времена. Процесс формирования понятия натурального числа протекал следующим образом. На низшей ступени первобытного общества понятие отвлеченного числа отсутствовало. Это не значит, что первобытный человек не мог отдавать себе отчёта о количестве предметов конкретно данной совокупности, например о количестве людей, участвующих в охоте, о количестве озёр, в которых можно ловить рыбу, и т.д. Но в сознании первобытного человека ещё не сформировалось то общее, что есть в объектах такого рода, как например, «три человека», «три озера» и т.д. Анализ языков первобытных народностей показывает, что для счёта предметов различного рода употреблялись словесные обороты. Слово «три» в контекстах «три человека», «три лодки» передавались различно. Конечно, такие именованные числовые ряды были очень короткими и завершались индивидуализированным понятием («много») о большом количестве тех или других предметов, которое тоже являлось именованным, то есть выражалось разными словами для предметов разного рода, такими , как «толпа», «стадо», «куча» и т.д.
у₁=к₁х₁+С₁ и у₂=к₂х₂+С₂
они будут пересекаться если не параллельны, а чтобы они не были параллельны К₁ не должен быть равен К₂, потому что если К₁=К₂ - графики параллельны
(например у=5х+2 и у=5х-10 будут параллельны , так как к₁=к₂=5 )
чтобы найти точки пересечения графиков, надо привести их к виду
у=кх+С, приравнять правые части и из полученного уравнения найти Х,
потом Х подставить в любое из уравнений и найти У, точка с этими координатами (Х; У) - и есть точка пересечения
найти точку пересечения графиков у=-3х+3 и у=2х+8
приравняем правые части
-3х+3 = 2х+8 все с Х перенесем влево, все без икс - вправо
-3х-2х=8-3
-5х=5
х=-1, подставим х=-1 в любое уравнение , например у=-3*(-1)+3 =6, у=6
х=-1, у=6 А(-1;6) точка пересечения