пусть данная дробь a/(a+2), тогда обратная дробь (a+2)/a, и новая дробь
(а+2-3)/а=(а-1)/а
получаем уравнение:
(а-1)/а - а/(а+2) = 1/15
переносим 1/15 влево и приводим к общему знаменателю
Для удобства я знаменатель писать не буду, он будет 15а(а+2). Пишу только числитель:
15(а+2)(а-1)-15а^2-a(a+2)
15a^2-15a+30a-30-15a^2-a^2-2a=0 (потому что дробь равно 0 тогда, когда числитель равен 0, а знаменатель не равен 0, значит имеем ввиду, что а не может быть равно 0,1 и -2) и ищем, когда числитель равен 0:
-a^2+13a-30=0
D=169-120
D=49
а=(-13+-7)/-2
а=10 ; 3
10 нам не подходит, поскольку по условию исходная дробь - несократимая, значит она не может быть 10/12, значит ответ: 3/5
б) Нет. Заметим, что стирать можно пары, в которых одно число даёт остаток 1 при делении на 3, а другое — остаток 2 при делении на 3 (пары первого типа), или пары чисел, делящихся на 3 (пары второго типа). В исходной последовательности 18 чисел с остатком 1, 17 с остатком 2 и 17 делящихся на 3. Тогда, чтобы осталось два числа, надо стереть 17 пар первого типа и 8 пар второго типа, останется одночисло, дающее остаток 1 при делении на 3, и одно число, делящееся на 4. Их разность не может делиться на 3.
в) Мы знаем остатки чисел, которые должны остаться. Максимальное чистное будет, если будем делить максимальное число с остатком 1 на минимальное с остатком 0 или максимальное с остатком 0 на минимальное с остатком 1. Посмотрим, что из этого больше.
Макс(0) = 150, мин(0) = 102; макс(1) = 151, мин(1) = 100. 150/100 = 1,5; 151/102 = 1,48... < 1.5. Значит, чтобы частное было максимальным, нужно оставить числа 150 и 100.
Вот как это сделать: стираем пары вида (6n, 6n + 3) для n от 17 до 24 и пары вида (3n + 2, 3n + 4) для n от 33 до 49
ответ. а) да, б) нет, в) 1,5.